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SU(2) X SU(2) shift operators analogous to the SU(2) shift operators developed and used by the
author for the classification and analysis of representations of Lie algebras in an SU(2) or SO(3)
basis are obtained for the SU(2) X SU(2) Lie algebra in the case where one has an additional set of
operators forming an irreducible four-dimensional tensor representation of SU(2)x SU(2). The
shift operators obtained are used to treat the representations of SO(5) in an SU(2) X SU(2) basis.

PACS numbers: 02.20.Qs, 02.20.Sv

1. INTRODUCTION

In a previous paper,' Hughes and Yadegar showed how
from the generators of an SU(2) [or SO(3)] group and a set of
operators { T'(j,u)} transforming as an irreducible tensor re-
presentation of dimensions (2j + 1) of the SU(2) Lie algebra,
one could construct shift operators O ¥ which, when acting
to the right upon eigenstates of the SU(2) representations,
shift the value of / [/ (/ + 1) being the value of the SU(2) Casi-
mir invariant] by k, where k can take on any value in the
range —j, —j+ l..,j—1,].

These shift operators have been used by the author and
collaborators to classify and analyze irreducible representa-
tions of numerous Lie algebras, both compact and noncom-
pact, in an SU(2) or SO(3) basis.>”” They have also been par-
ticularly useful in tackling state labeling problems such as
arise for SU(3)DSO(3),>"" and in a series of papers by Van-
den Berghe and De Meyer'?~?! have been used to solve the
state labeling problems that arise in the classification of mul-
tipole phonon states using the SO(5), G(2) and SO(7) Lie alge-
bras. The shift operators have also been used to treat the
superalgebras Osp(2,1)?* and Spl(2,1).%

One disadvantage of the SU(2) shift operators is that
when the Lie algebra G has dimension greater than about 10
the degeneracy of the SU(2) or SO(3) subalgebra’s represen-
tations in a given irreducible representation of G becomes
rather high and several additional commuting state labeling
operators are required to distinguish between the degenerate
SU(2) states. For a given Lie algebra G the most convenient
subalgebra H with respect to which to analyze the represen-
tations of G would be a maximal one, but in general it would
be extremely difficult to write down H shift operators analo-
gous to those constructed for SU(2) since, for instance, a
knowledge of the Clebsch-Gordan coefficients of H would
be required. However, if H is just a direct product ( X SU(2))"
then the shift operators for H should be obtainable without
too much difficulty using the fact that, for each individual
SU(2) in the direct product, they must behave like the al-
ready familiar SU(2) shift operators of Hughes and Yade-
gar.' The Lie algebras B(n) of the SO(2n + 1) groups and C{(n)
of the Sp(2n) groups both possess (X SU(2))” subalgebras, as
does the exceptional Lie algebra G(2). This fact can be seen
easily by inspection of their root systems. So for these Lie
algebras generalized (X SU(2))" shift operators should be a
useful tool which can be constructed without too much diffi-
culty. The Lie algebras A(n) of SU{n + 1) and D{n) of SO(2n)
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do not contain (X SU(2))" subalgebras but will still contain
(< SU(2))" subalgebras with m < n—for instance for A(n),
m = [n/2].

In this paper we consider the simplest case of SO(5),
whose Lie algebra contains an SU(2) X SU(2) subalgebra [the
Lie algebras of SO(4), SU(2) X SU(2), and SO(3} <X SO(3) are,
of course, isomorphic]. Apart from the SU{2) X SU(2) gener-
ators, the additional SO(5) operators form an irreducible
four-dimensional tensor representation R '+ of
SU(2) X SU(2). In Sec. 2 we construct the SU(2) X SU(2) shift
operators for this case. Denoting by p( p + 1) and g{g + 1)
the eigenvalues of the Casimirs P? and Q? of the two SU(2)
subalgebras, the shift operators obtained shift ( p,q) by
(i’%’%)or(iéy —%)

In Sec. 3 the mutual commutation relations of the R !
operators are used to obtain relations between SU(2) X SU(2)
scalar double products of the shift operators and the SO(5)
invariants. The Hermiticity properties of the shift operators
are also written down.

In Sec. 4 these properties of the SU(2) X SU(2) shift oper-
ators are used to classify and analyze the representations of
SO(5) with respect to the SU(2) X SU(2) subalgebras, and also
to write down the matrix elements of the R !*!! generators
between arbitrary SU(2) X SU(2) states. The results obtained
are in agreement with those found by Kemmer, Pursey, and
Williams>* and by Sharp and Pieper.”

2. SU(2) x SU(2) SHIFT OPERATORS

We consider the group SU(2)P X SU(2)? generated by the
mutually commuting sets { po, p . | and {g,,q , }, respec-
tively, satisfying the usual SU(2) commutation relations. We
denote the two Casimirs by P2 =p . p_ + po( p, — 1) and
Q? =q.,.9_ + qolgo — 1), and the eigenvalues of P2, Q?, p,
and g, by p(p + 1), glg + 1), m and u respectively.

We now introduce an irreducible four-dimensional ten-
sor representation R ! of SU(2) X SU(2) whose elements sa-
tisfy the commutation relations

[PoR o ] =R oo [PoR_ (] = —IR (.,
(PR, ]=0, [pP_.R (. ]=0,
[peR_ o] =R oy [PR . J=R .y
[goR . ] =R, s [9eR. .\ ]=—R,._\,
[9+R .. ]1=0 [¢g.R,, ]=0
[4+’R¢5‘~;]=R:¢5‘3’ qf,RiH]zRU_,.j.(Zl)
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For the time being we need not consider the mutual
commutation relations of the R !*}! operators since they do
not affect the construction of the shift operators. Neither do
we need to specify any Hermiticity relations, even for the p’s
or g’s; the shift operators will be equally valid if
SU(2) x SU(2) is replaced by a noncompact version such as
S0(2,1) XSO(2,1), SU(1,1} x SU(1,1), or SO(3,1). We obtain
four SU(2) X SU(2) shift operators, the method of construc-
tion being by analogy with the construction of SU(2) shift
operators out of a two-dimensional irreducible set of tensor
operators,"”?* to which the SU(2) x SU(2) shift operators
must reduce for SU(2), and SU(2)? individually. We shall not
give any details of their construction, but merely write them
down here. Denoting by Pand Q the operators whose eigen-
values are p and g [so P> = P(P + 1), Q> = Q(Q + 1)], they
are

()
o = =R, (P+po+1)Q+g+1)+R_, _q.p.
=+ R»,~5q+(P+PO +1)+R —g,gpa—(Q +go+ 1),
(2.2)

V= —R_ | _((P+polQ+qo)—R,,9_p_
+R_, g (P+p +R, _p_(q+4q) (23)

Y= —R,_|(P+po+ 1)@+ +R _,,qp,

+R, g (P+po+1)—R_, _p,(Q+ o)
(2.4

= —R_, (P+p)@+go+1)+R, _,q,p
—RAQ,«5q+(P+P0) +R5,§P—(Q+qo+ 1),
(2.5)

The actions of these shift operators when acting to the right

on the eigenstates |7) of SU(2)" X SU(2)? are

O(ii)‘p, > 'p+2,m+>

'NAERUESVES.
ol=i-djprmy fo—bm—1)
g —ha—}
ol-i-V p,m>m p+5,m+%>,
gl lg—Lpu—}
=41 . | —1
0( b 5) p’m>oc p »M 2>' (2.6)
gpl g +ip+3

In analogy with results obtained by Hughes and Yade-
gar,' using SU(2) shift operators constructed from a two-
dimensional irreducible tensor set of operators, one obtains
easily the following results:

[P’Ri,t&](2P+ l)=R_i’i5p+ +£R5,15(2Po+ 1),

2.7)
[PR_, , J2P+1)=R,  ,p —iR , ,(2po—1)
(2.8)
[QR. ]2+ 1)=R_, _,q, +IR (290 + 1),
(2.9)
[QR,, ]2Q+1)=R_, g —4R (29— 1)
(2.10)

1016 J. Math. Phys, Vol. 24, No. 5, May 1983

These will be used in the following section to obtain the
Hermiticity properties of the SU(2) X SU(2} shift operators.

3. THE LIE ALGEBRA OF SO(5)

SO(5) is generated by the p’s, ¢’s, and R *¥) operators
given in Sec. 2 where, in addition to the commutation rela-
tions (2.1), the R "} operators also satisfy

[RyoR 1= —Po— 90

[Rifn Au]—Po 9o

[RH’ wa]—P+’[R“,R_“,]—q+,

[Ro,_ R _]=g_[R_,_R_,]=p_. (31

In addition the SO(5) generators also satisfy the Hermiticity
conditions

9% =904 =q_,

=R, (3.2)

p; =P07PT+ —:P_,
RE& = “Rﬂ»ﬂR;—

SO(5) possesses two invariants of second and fourth or-
ders in the generators (but both are of second order in the
R " operators; there is no independent invariant of fourth
order®® in the R **!). The invariants, which are both Hermi-
tian, are

I, = R R RHR b~ ,’+]P’2+Q2—po, (3.3)
1 —ZRHq y /- +2R —19+P+
_2R§,~gq+P -2R2 wq-P+

- 4R5,5R —9-Po+ 4R_,75R —L—19+Po
— 4R, R, _ P g0
+4R —5,5R —1 P49+ 4R,j,5R — 1. —1Pofo

+4R, _\R_, \pod0

+ (P + Q%21 + 1) — 6P*Q* + 4Q°p,

+ 4P%q, — 4qp5. (3.4)
Note that the expressions for [, and I, are not symmetrical in
P, and q,; this is because the products of the R ! operators
are written in a form which is not symmetrical with respect
to the p and g suffixes. Note also that 7, and 7, are precisely
what are called 4 > and M * by Kemmer ez al.**

In order to simplify calculations, we define the follow-

ing normalized shift operators, valid when acting to the right
on SU(2) X SU(2) states |7~

e

()

=l{p+m+izt+ )(q+p+l+2)]—l/20E¢\)il)
(3.5)

- £hEd
AE"I)l)_[(p+m+% %)(q+lu %_—F%)]——l/zo(i’é;xy).

(3.6)

The advantage of using these normalized operators is that in
doing so one has effectively divided out the internal structure
of the SU(2) X SU(2) representations.

Now, making use of Egs. (3.1), (3.3), and (3.4), we obtain
the following expressions for SU(2) X SU(2) scalar products
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of the shift operators.
© L
AN A4
=076

= —L—(p+alp+g+1)

X@2L—(p+q—1)p+q+2)) (3.7)
) 0
AV Ay
)70

= -, —{p+g+lip+g+2)

X2, —(p+qip+q+3))) (3.8)
e

(
G070
=4, —(p—qlp—g—1)
X2 —(p—q+1)(p—g—2) (3.9)

=4l —(p—qilp—q+1]

XQ2L—(p—g—1)(p—q+2)) (3.10)
The structure of the SO(5) representation is, apart from Her-
miticity requirements, contained entirely in these four equa-
tions.

Using the Hermiticity relations (3.2) together with Eqs.
(2.7)~(2.10), one obtains after some easy calculations the fol-
lowing Hermiticity properties of the shift operators:

(0 )

A/ 2P+ 1)2Q + 1) =4"~¥(2P)2Q),
N -1
(A (*5)) 2P+ 120+ 1)=4 ( ! )(ZP)(ZQ +2).
(3.12)
Note that the original O shift operators satisfy precisely the
same Hermiticity relations.

Taking matrix elements of Egs. (3.11) and (3.12)
between the SU(2) X SU(2) eigenstates |7 ) {the m and u labels
are omitted for the sake of brevity) we obtain

o6

_ (P29 +1F1) <p—5
e+ 12g+1) \gF}

(e

_2p+22¢+1F1) <p+sA(;§)
2p+12g+1) \¢F}

(3.11)

(Il »
A F q), (3.13)

’;) . (314

Finally, from these two relations one obtains the follow-
ing formulas for the matrix elements of the double product
operators of Egs. (3.7)—(3.10):

ClaEals'l)

(2p+2)2g + 14 1) <p+%A(ti)
2+ 12g+1) [\gx34|" (%)
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2

, (3.15)

2

<p ‘A () ,(z) p>
ql” (520 (5) g
_ pl2g+1+1) <p —1| (3 p)
2p+12g+1) [\aF3"(5) lg

These relations show that the double-product operators are
all positive semidefinite. Equations (3.7)—(3.10), (3.15), and
(3.16) are all that are needed in order to give a classification

and analysis of the irreducible representations (I.R.’s) of
SO(5). This we do in the following section.

2

(3.16)

4. IRREDUCIBLE REPRESENTATIONS OF SO(5)

In this section we use the properties of the SU(2) x SU(2)
shift operators given in Sec. 3 to classify the LR.’s of SO(5).
The internal properties of the I.R.’s of SU{2) X SU(2) can be
summarized by the statement that p and ¢ must be non-
negative integers or half-integers. The first step is to deter-
mine the maximum and minimum values within a given L.R.
of SO(5) of p and ¢, so we define |2 ), o) 7.}, and [2) to be
states of, respectively, minimum p, minimum ¢, maximum p,
and maximum q. These, and all other states of the LLR., are
connected to one another by repeated actions of the shift

! —1
operators A ( * 5) and A ( * 5), as depicted in Fig. 1. From the
way in which the states are connected, one sees that the var-
ious p and g values of the above states must obey the relation-
ships

g —q=p —p, ¢ —q=p—p,

, -
P—p=9—4, 9—g=p —p. (4.1)
q A
(n-k,nl
(n-k-"2,n/2) (n-ke¥2, n-V2)
7
/ AN
N
/ ’ \
/ 7 N
L0 NN
, ’ N 1n-2,n-ke 21
/
4 7 tn,n-k)
(Y2, ke V21 o 5 1
P Xp,q) /’ , (n-"2yn-k-1/2)
{0,k s/
N // /
(V25 ke V20 /
N 4 7/
AN
N N 7 s
\\ N 4 /
AS 7/
[k-V32:12) tkeV2,V2)
(0,0} k,0) P

FIG. 1. States { p,g} of the irreducible representations of SO(5) specified by
L= —2nk+k?+3n— k), L=k(k+ 1)2n—k+22n —k+ 1)
+4

are represented by a solid circle. The actionsof A * TV are represented by a
x4

open arrows, and those of 4 * *¥ by closed arrows.
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(o)

—4 !
A (‘*E i)A ( + 5)[{} ) = 0; so using Eqs. (3.8) and (3.10) we obtain
O=L—(P+q+1)P+q +2)
XQ2L—(P+4q)P+4q +3)
O=L,—-(P-q)NP—da+1
X@L—(p—qg” —)YP—q™ +2)
Elimination of I, yields
(P+1)2¢'+ 1)1,
=P+ 120 + 1"+ 2P+ 4% +¢);
50, since we cannot have eitherp= — lorq' = —},
L=(pP+2%+9+4q). (4.2)
Since I, is an invariant, this value must apply for all states of
the LR.
In a similar manner, by considering the state 2) we
obtain
L=(G+25+p" +p). (4.3)
Next consider the state | 2 ); this must be annihilated by

Now we must have 4 .} =0, and hence also

-1 3 )
A (1“), $0 also A (“)A (ii)l‘;) = 0. Use of Egs. (3.7) and
{3.9) then yields the relations
O=IL—(p+aqllp+a.+1)
X@2L—(p+q,— )Np+4q:+2)
0=I4—(2—41)(£—ql_ 1)
X@2L—(p—q,+1)(p—4q.—2))
Again, elimination of I, gives
22+ 1 —p* —qi —q +1)=0

or, since g, # — },

oL—p ~qi —q,+1)=0. (4.4)
Similarly, from considerations of the state 2}, we get
gl,—¢ —pi —p +1)=0. (4.5)

From (4.4) and (4.5) we obtain the following possibili-
ties: (a)g =p=0;(b)p =0,1, =¢* + p; +p, — 1,(c)g =0,
L=p+qi+q,—LWA)L=¢+pi +p —1=p"+4

+ g, — 1. Each possibility must then be used in conjunction
with Egs. (4.1)-(4.3). Possibilities (b), (c), and (d) all lead to
conclusions which violate the Hermiticity conditions (for in-
stance, possibility (b) leads top, =p + 1 or p + i), and we
omit the details of the rather cumbersome algebraic manipu-

lations involved. The first possibility, p = ¢ = 0, however,
J
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works. In this case, Egs. (4.1) become

91=P, 4 =4§—P+p, ¢ =p—p, P'=3—4q,
and these together with Eqs. (4.2) and (4.3) yield (calling
p=np =k)
p=9=0,p=q,=kp=g4=np =¢=n—k (4.6
where n>k and n, k are both non-negative integers or half-

integers. Finally, using Eq. (4.2) together with one of the
equations for 7, yields

I,=2n> —2nk + k*+3n—k, (4.7)
ILi=k(k+1)2n—k+1)2n—k+2) {4.8)

A given LR. of SO(5) can then be labeled by the pair (n,k ) or,
equivalently, by the values given in Egs. (4.7) and (4.8) for the
invariants /, and 1,. [Note that in the notation of Kemmer ez
al *n=|k+1).

Having determined the ranges of p and ¢ for the LR.
D "*) of SO(5), which are as shown in Fig. 1, the next task is
to determine the multiplicity of the states. It is already
known**?* that the states are simple, i.e., ( p,g) is nondegen-
erate, so we shall give here only a sketch of how the simpli-
city of the states could be demonstrated using our shift oper-
ator techniques. The method consists of working out the

fourth order product operator

(o) () (2D ()
acting on the state |5 ); G represents a shift around a square of
Fig. 1. On calculations of G, one finds that it can be expressed
entirely in terms of /,, I,, p, and ¢, which is equivalent to the
statement that there are no independent SU(2) X SU(2) scalar
operators of order four in the R '*") operators. Thus G is a
diagonal operator, so G |?) « |#) for any state |/ ). The sim-

plicity of the { p,g) states can then be proved by induction.
—1 i

For instance suppose |7 ~§), « 4 ( -‘)A (’;)if’, ~*) and

n—1

i -1
|n=k 2ocA(“Q)A(_*)K,'”"); then ["~5),« G |7 2%),

n—1 n—1
o |7~ %), and so the two states are identical, i.e., the eigen-
values (n — k, n — 1) of (P,Q) are simple. By applying the G
operator to states corresponding to ( p,q) values successively
further removed from (n — k, n), i.e., by shifting around
squares which are successively further removed from the top
square of Fig. 1, one proves by induction that all  p,q) values
are simple.

Using Egs. (3.7)—(3.10) with the values for /,, I, given in
Eqgs. {4.7) and (4.8}, one obtains

(4.9)
(4.10)
(4.11)

(4.12)
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Substitution of these results in Eqs.{3.15) and (3.16) then yields

‘<p+§A(i) p> 2=(2p+1)(2q+1)(p+q+k+2><p+q—k+1)(p+q+2n~k+3)(2n—p~q—k), @.13)
g+31"(5)lq 202p + 229 +2)
(p—%A(:i)p> _ o+ 12g+ Np+grk+p+g—kip+g+2n—k+2Pn—p—g-—k+1)
a—31"(2) |q 2(2p)(24) 14

<p+sA(_i)p> _ 12+ Np—g—k)p—g+k+Np—g-2ntk-lp—g+2n—k+2)

g—31"(°) lq 2(2p + 2)(29)
(4.15)

<p—% A p> T+ l2g+ Wp—g+klp—g—k-—Np—gt2—k+t1lp—g-22+tk-2)

g+417(5) lq 202p)2g +2)
(4.16)

Choosing the relative phases of the state so that (51} ]A ( 3 Y | ) are both real and non-negative, we now obtain
< P+l 0 P>=[(ZP+1)(24+1)(P+q+k+2)(9+q—k+ xp+q+2n—k+3)(2n—p—q—k)]'" @17
g+il" (2)la 22p +2)29 + 2)
<p—5A(:i)p>=[(2p+1)(2q+1)(p+q—k)(p+q+k+1)(p+q+2n—k+2)(2n—p—q—k+1)]*/2 @1
a—41"(5) lq 2(2p)(29)
<p+aA(-i)p>=[(2p+1)<2q+1)(p—q—k)<p—q+k+1)(p—q—2n+k—1)(p—q+2n—k+2)]”2 @.19)
g—41"(7) la 2(2p + 2)29)
<P—£A(_i) P)=[(2p+1)(24+1)(p—q+k}(p—q—k—1)(p—q+2n—k+1)(p—q—2n+k—2)]"2‘ 4.20)
g+i7(5) le 2(2p)(2q + 2)

By asimple extension of Eq. (3.14) of Hughes and Yadegar,' we obtain the following expressions for the reduced matrix of
theR“‘“'

ey > (2p+2)(2q+1i1)]”2<p+%A(ii) p>, wa1)

9t} (2p + 129 + 1) g+il" () lq

12 [p 1 —4

(0 hwif) = [Gotee L0y 4 L)), 422)

q9+4 p+12g+ 1] \axi[7 () lg
Hence, using Eqs (4.17)~(4.20), we obtain
PHhpiP) = k+2 k+1 2 —k+3)2 k)12, 4.23
g+1 q =[lp+q+k+2dp+g—k+N)p+g+2n—k+3)2n—p—q—k)] (4.23)
<p 2|| Z>= (P+g—kip+g+k+l)p+g+2n—k+2)2n—p—q—k+1)]'? (4.24)
P+§ _ 2

IIRl|q~ (P—q—k)Np—q+k+1)p—g—2n+k—1)p—g+2n—k+2)] (4.25)
<q+iHRIIq>=[%(p—q+k)(p—q—k—1)(p—q+2n-k+1)(p—q—2n+k—2)]”2- (4.25)

Note the sign difference between the expression for (4~} ||R ||7 ) given here and in the paper by Sharp and Pieper.” This is due
to a slight difference in the definition of reduced matrix elements.

Finally, we obtain the followmg expression for the actions of the R "**! on the states [27) of the L.R. D "™*) of SO(5), in
which the matrix elements of 4 (V) and 4 (V) are as given in Egs. (4.17)-(4.20):

pm| _[(p+m+g+p+ ]2 (p+4,0lp\| 2 +im+}
Ri’ii 2 2 4
g (2p + 1729 + 1) g+4l lg/lg+indt)
[ l2=migFp '/2<p—5A(:i) p> p—s,m+5>
L (2p + 1)*(2q + 1)? -1 gl lg—4pu+}
[ (p—m)gFp) 12 [p+3],(2)|P\|p+im+)
+ (2p+1)2(2q+l)2] < —gA - q> q—5w15>
(p—mlaFu+ 1] (p—3| (3] P\ p—tm+}
+ ] < 4 ) ? ), 4.27)
L 20+ 1729 + 17 a+il g+ist}
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R, |7 =[(p—m+1)(qiu+1)]1/2<p+5A(i) P
g (2p + 1)%2q + 17 a+i g
(p+ mgFp) ]1/2<p~;A(:i)'p)
“lep+ 1729+ 171 Va4 q
i[ (p — m)lg Fp) ]"2<P+£A(5)'P>
(20 + 172+ 171 \q—1 q
_[(P+m)(¢1i,u+1) “2<p-sA(;*),

2o+ 1P2g+17 | Vg+}

5. CONCLUSION

In this paper we have constructed shift operators which
play the same role for SO(4) or SU(2) X SU(2) as the ones
constructed by Hughes and Yadegar'® did for SO(3) or SU(2),
and shown by the example of SO(5) D SU(2) x SU(2) how they
may be used to classify the irreducible representations of
SO(5), obtaining results in agreement with those obtained
using different techniques by Kemmer et a/.** and by Sharp
and Pieper.? It is the author’s intention to use similar shift
operator techniques to tackle the G(2) DSU(2} X SU(2) prob-
lem, and G. Vanden Berghe and H. De Meyer intend to
obtain SU(2) X SU(2) X SU(2) shift operators for the Lie alge-
bra of SO(7). It is hoped that the results obtained by these
techniques will facilitate the calculations involved in the
classification of octupole phonon states.
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In this paper we describe the relations between the irreducible representations of the
hyperoctahedral group in four dimensions and irreducible, low-dimensional representations of

the orthogonal groups O(4) and SO(4).
PACS numbers: 02.20.Qs, 02.20.Rt

1. INTRODUCTION

In recent times a lot of work has been done on four-
dimensional lattices in order to get discrete approximations
of the four-dimensional space. The hyperoctahedral lattice
can be generated as the set of linear combinations of the four
elements of an orthonormal basis with integral coefficients.
The first step in the examination of this lattice should be the
investigation of its point group. In an earlier paper (see Ref.
1) we described the structure and the complete system of
irreducible representations of the point group formed by ro-
tations and reflections, called W,, and its subgroup of pure
rotations, SW,.

As W, is a subgroup of O(4), all representations of O(4)
form representations of W, when restricted onto that group.
Similarly, restrictions of representations of SO(4) onto SW,
yield representations of SW,.

It may occur that the restriction of an irreducible repre-
sentation of the continuous group onto the appropriate finite
group is reducible and decomposes into a number of irredu-
cible representations. Our aim is to find all irreducible repre-
sentations of O(4) and SO(4) which stay irreducible when
restricted to W, or SW,, respectively.

The paper is organized as follows. After some prelimin-
aries we describe, in Sec. I11, the representations of O(4) and
SO(4) in a way which is the most convenient for our pur-
poses. In Sec. IV we determine the irreducible representa-
tions of O(4) that stay irreducible after restriction on W,. For
this purpose, we also compare the twofold Kronecker pro-
ducts of the four-dimensional canonical representations of
both groups. In Sec. V we do the same with SO(4) and SW,.
Additionally, we show what happens with the low-dimen-
sional representations of SO(4) on the finite subgroup SW,
(see Table V).

Il. PRELIMINARIES

In our notation we follow Miller.? If we use the symbol
= " for representations, this only means the equivalence of
the representations and not actual identity.

The symmetry group W, of the four-dimensional cube,
consisting of pure rotations and rotations combined with
reflections, is a group of order 384 and can be presented by
the wreath product Z, ~.S,, which is isomorphic with
(Z,)* ® .S, where (Z,)* is the invariant subgroup.

The subgroup of all pure rotations, called SW,, is of
order 192. For details on the structure and the representa-
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tions of these groups the reader is referred to Ref. 1. Here we
present only the characters in the Tables I and II.

For W,, the characters are denoted by y', where the
upper index, n, indicates the dimension of the appropriate
representation and the lower one, &, denumerates the char-
acters of different representations of the same dimension.

For SW,, the characters are denoted by an additional
left upper index s: *y'". The lower index is omitted if there is
only one representation of the given dimension.

The symmetry operations performed on the cube de-
fine, in a canonical way, a representation of dimension four
which is irreducible and faithful. Therefore, by a theorem of
Burnside and Brauer (see Isaacs, Ref. 3), it is possible to
obtain all irreducible representations of W, and SW, respec-
tively, by decomposing multiple Kronecker products of
these canonical representations with themselves. The char-
acters of these canonical representations are given by y{" (for
W,) and *y% (for SW,). In the Tables III and IV we list the
multiplicities of irreducible representations appearing in m-
fold Kronecker products of the canonical representations
with themselves. For this purpose, the representations be-
longing to the characters y{" and *y{", respectively, are la-
beled 7" and “7}?, respectively. Furthermore, the canonical
representations which appear to be 74" and *7" are called T'in

TABLE I. Characters of W,.

Si-cycles | Prate| 128 |rsvul 72 [Mfle| & | P [262d] 2
s, -cycles |1*| 1 122122]J‘ 13|72i%2| 1*l13) e | o | 2] |2 93] 03] 2 122ir‘
order | 1|4 [12[12] 6|32|24|2¢] ¢ |32(48[48{12{24|12| 323212 {121
X7 AR AR
Xt BRI BRI G AR
xj B E IR s I eI e
xI BEIF IR I R T I EINEE
X 2|2]ojo|2}-1]ot0] 2[1]o]o] 2]2}of-1][-112]0]2
x5 2(2|o0lo|2y1|ofol-2|-1]olal2]-2{0]1[1]2]0]2
X slalr)r]3lojr 1] 3{ala]|-1]1]2]1]a]o]-1]1]3
x5! 3|-3-11|3lol1{a[-3a]1|{-1|1]1]-1{o]o]-1]1]3
e a3l 3lefal1] 3lo s [ 1]-1[-1]-1]a] o]-1[-1]3
Xt 3|-3[1{-1) 3fo}-1]1]-3]a|-1]1]1[1]1]a]o]-1]1]3
X sl 2] 2] 2|0 1]olo]2[1]olo oo -2 T=1]0]-2]«
X% 4|2|-2[21a|-110loi2]1]ololelal2]1]|1]o]-2i-
x5 sl2]-2|-210|1]oqo|-2]1]ololofo] 2]-1]-1]o] 21-¢
X w|-2) 2]-2la]-1{a]o]l 21 1]afolofol-2[-11 710 2]
X sl o] 2ol -2[afa|-2{olofoo]2la]2]0]0l-2[a s
X slolz|o0|-2|ofolz]alalolalz]a|-2l0o]o]2[0]6
X s|olol2{-2|o]-2[0o] 0lclolo|2[0]olo]a]2]2]6]
X 6lo]o|-2]-2[o|2[o]afolo|o]-2]o[o]ojo]|2]-2]s
8 sl«loJolol1]ala]-+]-11a]a]e]o] o] 1]11o]a]-8
X5 si-«|lololo]rloJo] ¢]-1Tolalololol 1 ]4lo]o]-e

0022-2488/83/051021-04%02.50
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TABLE II. Characters of SW,.

Sy -cycles 7, 1‘4 12 722] 723 8 Lz 24|26 24
0 2 4 2 2 2] 2 2 0

s -cycies | 1 |12| 1 |12]13 4} o| 2] 2|23z
order | 1] 12] 6252l 20l 2] 6] 6] 2] 2] 2] 4
*x tlala el ia ol a2
FxY -yl el alalo ool ]
X7 |2lolzlo ool 2] 2]0]4 zTﬂ
[:xi: 3|1 3|7]al Tjﬁ’ 1lalals
X)) la|afsir|ofrtr |1 a0 1]3
(X7 s o] Tl s g o] ]
A B IR IR EIE
BN B I BN IE I Al
[ T Tl el T thfa 0]-117]
T elelolol i ol olol 02|10, ]
x| el2je(o] ] ol HAREE IEIC
| X" le|o|-2|o]olalal-2'-2l0]a]2]s
X% Js]olo]ol-1lolo]ololo]1]o]s

the tables (*74" can be obtained as a restriction of 74" onto
SW,).

lll. REPRESENTATIONS OF O(4) and SO(4)

For the examination of the connection between O(4)
and W,, and SO(4) and SW, we need a classification of all
irreducible O(4) and SO(4) representations of finite dimen-
sion. Starting with the knowledge of the finite-dimensional
representations of SU(2) (see Miller, Ref. 2) one can obtain all
finite-dimensional representations of SO{4) by means of the
isomorphism

(SU(2) ® SU(2))/Z,~SO(4) .

If D'#, 1 >0 half-integer, denotes the irreducible SU(2) re-
presentation of dimension (2u + 1), we get all irreducible
representations of SU(2) & SU(2) as

DiwY. =D“‘)®D("',

(see Miller, Ref. 2). It is not difficult to prove that D '#” is a
faithful representation of SU(2) & SU(2) if and only if
2u 5= 2v mod 2. As we are only interested in single-valued
representations of SO(4), we have to select those of
SU(2) ® SU(2) which are not faithful, i.e., D {*" with
21 = 2v mod 2. Obviously, D **! has the dimension
(2u + 1)(2v + 1). Thus, {D *“|u, v>0 half-integer and
21 = 2v mod 2} is a complete system of finite-dimensional
irreducible representations of SO(4).

In order to obtain the O(4) representations from those of

4, v>0 half-integer

TABLE I11. Multiplicity of irreducible representations in n-fold Kronecker
products of T with itself, 1<n<10, for the group W,.

TABLE IV. Multiplicity of irreducible representations in n-fold Kronecker
products of T with itself, 1<n<10, for the group SW,.

S_f1 1S (11 ]s 2)f (3045 (31| 3|3 (3195 DI\ (35 (&) 8 L) (8] (s {8)
T T |r [T |T |T [T T |T T T

T T
! 2 ! 2 B “ 5 [ b 2
‘-r;"_-r ocjolelolelo]olojolriolol]oe
T | [oe|lol ot |t ]ola]o]ojr]|oe
rfo|leloloejofols|olc|s|]els
e T s | s{wotstw|wofs6isloioimn
T |oc| clololo]ololols [ss]|c]e

s‘T 51| 35| 65 136 | 120 | 136 | 136 | 120} 120 0 0 125} ¢

o T ool ojo|ojo| 0| oo |ns|esr] o s

0’ T TIS | 451 [ 135 | 2080 | X016 | 2080 | 2080 | 20% | 2016 | O 9 |wse| 0

0

I

OS] D795| 21845 | DB | X 60| 3% | 3890 | 32646 | 12 0 RS ]

& |le

0 V) N O O N2 ) ) ) R ) N
s |2 Sk ' AR NN IR RN
*r’,“.—T ofo olo|o olololrja|o|ofoe]|o]o]|o}e|o
T lijololololo|rlofoloele|olalo|lr]|oft]a]o]e
o T |olo|olo]olololalelal[s|s]a|s]o]|o|loa]e]s]2
T r|e|rtajelria]ala|oflojo]elw]|s]|n|s]o]e
e T |ololololo]ofolo|ofo]n]|2]m|w|o|o]o]ofs|w
[ 7 o[ 70 15 | 20] 5|« |s0]e0|ce| 0| 0] 0] 0] w0 o
o T olelolololololo|ol|ol|mlulns|ss o] ofo]ol]ess|er
@8 T | 375 338| 315 | 6| 093] 7z | 72| woelwoos| o8| 0 | 0 | 0 | o | 20002006 0m| 2| o | 0
ST ololejololalo]ofolofsen a|lofo|o
@ T |sarr{seeo| s35s. oloilalo oo
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SO(4), one possible way is the so-called group extension
which is in some sense the inversion of Clifford’s theorem
(see Weyl, Ref. 4) and makes use of the identity
0O(4) = SO(4) U r - SO(4), where r is a reflection with r* = id.

For D'#" the representation D *, defined by

D'» gl =D"r-g-r),
is called the “conjugate representation”. It is easy to see that
the definition of D ** is independent of the choice of r, be-
cause all reflections s of O(4) can be represented as s = hr, r
being an arbitrarily chosen reflection and 4 € SO(4). In our
case, we find D “" = D " #. Since the proof of this identity
is not very difficult but rather extensive, it will be omitted
here.

For the classification of the O(4) representations we first
give the following definitions:

TABLE V. Relations between representations of SO{4) and SW,.

©.0] s_i1)
D ’ = b
5w,
J‘/zr/zzy s 1)
D o=y
Sw,
(17} /3, /
0 = %t ,}e S
sw,
(32 32 u s L P
i 3 } - sr.:/@st;/@sr‘m
‘SWA
22 (2, S (35 i3 ) s ¢ 3 5 (8
D = Sl Te e et Pe P et Te P
' 2 1 3 4 [
Sw,
(A
[01) 3
D = % j (fired)
Sw,
1.0) s_i¥
2] ’ ]
Sw,
o 2 o Sy 5),‘
5w,
DIZ o} I s_2 S'E (;3;
Sw,
(32,92 s
Sw,
772, ¥2) - 5w
BA
(1.2) p
D 2 S g SyiigS (g5
o 2 ¢ s
3
(2.1) 1 S (35,3
R (3S. (3 oS (6]
D \94- e el et
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D (1) if geS04),
U‘i"“’(g)t=[ (8) if g (4)
S.D'*#rg) if geO@4)\SO(4),
with
1 0 0 0O
0 0 1 0
r:=
01 0O
0 0 0 1

and S being defined by the relations S * = id and
T (rgr) = ST ( g)S forallg € SO(4). The existence of an S with
these properties can easily be shown.

Furthermore, for u#v
U g = [D I gle DM Mg if geSOM),
* O R #rg) @ D™ Hirg)) if g € OMNSOM),

with

0 i
Rz:(z‘d g)

Additionally, we define

U'#(g): = det(g) - U g)
with

1 if geSO@4),

det(g): = [ i 1 ii Ze 3024; .
This is also valid for z = v. It can be shown that
{U'#] u>0 half-integer} U {U'*#| u>0 half-integer}
[ U#0<u <v half-integer and 2u = 2v mod 2}
uf U'#*"|0<u < v half-integer and 2u = 2v mod 2}
is a complete system of irreducible finite-dimensional repre-
sentations of O(4). Note that U'# and U:* are equivalent
representations. It is easy to calculate that

dim U'## = dim U'*# = (2u + 1)?
and

dim U'#" = dim U'# = 22u + 1)2v + 1).

IV. O(4) REPRESENTATIONS RESTRICTED ON W,

We are now looking for those irreducible representa-
tions of O(4) which remain irreducible after restriction on
W,. For alist of the W, representations the reader is referred
to Ref. 1. W, has irreducible representations of dimension
one, two, three, four, six, and eight. So we only have to re-
gard the following O(4) representations:

U0, g0, yon, o, g2, iz
By construction of the O(4) representations the following
relations can be seen:
UCO W, = 7!
U W, = 7
UV w, = 7Y (“the canonical representation”),
U(L/z’l/z)l W,=r¥ =g,

Here, U 4| W, means the restriction of the O(4) representa-
tionU '#* on the finite subgroup W,.
Furthermore, one finds

(“identity”),

(“determinant”),

1023 J. Math. Phys., Vol. 24, No. 5, May 1983

US\W,=U0"w,=rP.
Here 7 is the irreducible skew-symmetric part of the two-
fold Kronecker product of the canonical representation 74"
with itself. In the same way one obtains U'" as the skew-
symmetric part of the Kronecker product of U'}/>'/? with
itself. As, additionally, dim U %" = dim 7}, we conclude
that

U W, =749

Normally, one would expect U'®" to form another six-di-
mensional representation when restricted to W, which
should appear to be 7 ® 7. Regarding the character table
of W,, we find that, for all classes of W,

det(g) = — 1 implies trace (7 g)) = ¥ =0,
S0

Pery =79,
and consequently,

vehw,=uv%"w,.

Furthermore, we look at the twofold Kronecker pro-
duct of U'%/*'? with itself. We have

U(l_/l,l/2)® U(L/Z,I/Z) — U(&Oi ® U‘S:”@ U{il) .
As shown above, U'%"), which appears to be the representa-
tion on the space of skew-symmetric tensors of rank 2, stays

irreducible after the restriction to W,.
However, the representation on the space of the trace-

less symmetric tensors, U}, decomposes on W, in the fol-
lowing manner:

U W= e rf
(see Table III).

V. SO(4) REPRESENTATIONS RESTRICTED ON SW,

We shall now proceed in the same way for SO(4) and
SW,, respectively. SW, has irreducible representations of
the dimensions one, two, three, four, six, and eight. There-
fore, we have four possible candidates of SO(4) representa-
tion, which stay irreducible when restricted on W,.

Do plszlzz poy [

b b tl -
As in the previous case we directly obtain
DOOSW, =7V (“identity”),

DW\A\ISW, = 7%  (“the canonical representation”).
Since
U©"|SO[d) = DV g DO
and
7O\SW, =) @7
we conclude that
DOYSW, =7 and DO|SW, =7,

Note that the characters of *7§’ and *r¢ (see Table II) differ
only on two pairs of conjugacy classes. These classes are of
the same order and have the same cycle structure in S, and
S. Thus the last two equations fix these classes and deter-
mine the following calculations with *75) and 7.
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For more details about the relatious between the SW,
representations and those of SO(4), it is quite useful to exa-
mine the decomposition of the multiple Kronecker product
of D ""21/2 with itself and to compare the results with the
decomposition numbers of Table IV.

For the SU(2) representations the following decomposi-
tion rule holds (see Miller, Ref. 2):

v+
DWMe D — e DO,
I=lv—pl
Consequently, by the definition of D (**), we obtain the ensu-
ing relation for the SO(4) representations:

L nt+p v+ v
DiuM g DY) — ® ®

w=p—p| w=|v-v|

D,

Now, it is only a matter of a proof by induction to verify the
resultant formula:

"D/, _ D212 g . g p/21/2)
\_".\/\/
n-times
n

n
= o o dl D"
=0 2v=0

: ).
witha,: =a?" . ¢! and

0 if 2v == nmod 2,
n 2v+1 .
n}, - -_ =
a: ((n/2) _ v) w72 vl if 2v=rnmod 2,
0 if v<0 or 2v>n.
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Since D "/*'?|SW, = *7{" it is clear that
(8 "D“/2'V2))’SW4 = ® n 57,(14] .

In both cases we know the decomposition rules and
thus we can compare the irreducible parts and have to attach
them to one another. This is possible in a unique way if we
additionally make use of the decomposition rules for the
twofold Kronecker products of arbitrary representations of
SO(4) and SW,, respectively. Applying this method for
n = 1,2, 3, 4, one gets the results listed in Table V. Note that
every SW, representation appears at least once.
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Nonscalar extension of shift operator techniques for SU(3) in an O(3) basis. lll.
Shift operators of second degree in the tensor components
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Shift operators Q ¥ ( — 2<k<2) of second degree in the tensor components g,,( — 2<u<2) are
constructed. Relations connecting quadratic shift operator products of the type O/ , , Q@ or Q ., ;
0/, and of the type Q) , , @ | are derived. The usefulness of these relations is demonstrated by the
example of the O ¢- and Q {-eigenvalue calculation for various irreducible respresentations (p,q) of

SU(3).
PACS numbers: 02.20.Qs, 02.30. + g

1. INTRODUCTION

The construction of orthonormal bases for SU (3) repre-
sentations in the SU (3) D O(3) reduction has been the subject
of numerous contributions. In most of the approaches one
looks for an additional Hermitian operator of which the ei-
genfunctions form a basis. It has been shown that only two
such independent operators exist, and in the present paper
we shall denote them by O and Q°¢.

A recursive method for calculating O { and Q ? eigenval-
ues has been developed by Hughes.!? The technique essen-
tially relies on a set of relations among products of shift oper-
ators which behave as O(3) scalars. These shift operators are
constructed out of the three generators /,, /, of O(3)and the
five generators g, ( — 2<u< + 2}, which form a five-dimen-
sional tensor representation of O(3). To find a part of the O 9-
eigenvalue spectrum, Hughes'~ needed relations between
triple product operators, which were very difficult to con-
struct. In two preceding papers>* (to be referred to as I and
II), nonscalar relations between shift operators were intro-
duced. This extension of the shift operator technique pro-
vided a lot of advantages and simplifications with respect to
the O {-eigenvalue calculation. However, these nonscalar re-
lations did not rule out the complete use of the triple product
relations.

In this paper shift operators Q ¥ ( — 2<k<2), which are
quadratic in the generators ¢, ( — 2<u<2), are introduced.
They are of fourth degree in the SU (3) generators. The Q'
operators can be expressed in terms of products of the type
0’ .OF (j + k = 5). However, the combination of the pro-
ducts 0, , O, which are in general operators of sixth de-
gree in the generators, is such that the resulting operator Q'
is only of fourth degree. In Sec. 3 relations between shift
operators of the type 0/, ,Qf and QFf, ;07 are derived.
Since such operator products are only of seventh degree in
the generators, the relations are easier to construct than the
triple product relations, where operators 0 ./, X0/, O}
of ninth degree are involved.

To complete the shift operator properties, relations
between products of the type 0/ , , Q ¥ are constructed in
Sec. 4.

In Sec. 5 we show that for the O 0-eigenvalue determina-
tion, the triple product relations can be completely replaced

* Research assistant N.F.W.O. (Belgium).
* Research associate N.F.W.O. (Belgium).
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by the newly derived relations between O/, ,Qf and QF
O/, operators. We also demonstrate the usefulness of these
relations in the calculations of Q 9-eigenvlaues, and in deriv-
ing a general formula for the Q {-eigenvalues in a case of
twofold /-degeneracy.

2. SHIFT OPERATORS FOR SU(3) IN AN O(3) BASIS

A commonly used choice for a generator basis of the
group SU(3) is the one consisting of the Cartan subalgebra
H,, H,, and its root vectors E _ ,, E _ 5, and E | 5.° SU(3)
possess two invariants 7, and I, respectively, of second and
third order in the generators, whose eigenvalues serve to spe-
cify uniquely its irreducible representations. Every unitary
irreducible representation may be labeled by the pair of inte-
gers (p,g) satisfying p>¢>0, and related to 1, and I by the
formulae®

L=4p"+¢* ~pg+3p) (2.1)
I=q1hp—29)2p +3 —q)lp + ¢ +3). (2.2)
Here, we shall be concerned with a different generator basis,

defined in terms of the above-mentioned generators as fol-
lows:

lo=23H, 1, =23(E ;—E,p)

go= —6Hy g, = ?3\/2(Eig +E  3)

9+2=6E ., (2.3)
The relevant commutation relations are

Vode 1= £le, [LI_1=2

[Io’q#] =Hq,,

[li ’qy.] = [2¢#}(3i#)]1/24pi1 (ﬂ=0’i 19i2),

(2.4)
and

[qo’qj: 1 ] = - 3(\/3/\/5)131: » [q+1!q_]] = — 310,

[9:29:]=—31,, [g.29_,]=6l. (2.5)

The operators /, and / together generate an O(3) subgroup
of SU(3), with respect to which the g, form a five-dimension-
al irreducible tensor representation. I, and I, are given in
terms of these generators by the formulae

Li=2g — 9191 — G191+ 9120 >+ 9-29.2)
(2.6)
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13=‘27(§g—{ (% —3¢.19_1— 69,29 1)q,

+ 6(6 )I/Z(Q+zq 1+ Q—2q2+1)

—9(6)'(g_1% +q.d%)

— 18(6)(ly — 1)g_L,

+ 18(6)”2(10 + gl

+ 18(L % — 312 + 31, + 10jg, }, (2.7)

where L*=/_/_ + 1% — [ is the Casimir of O(3). The irre-
ducible representations of 0(3) will be labeled by /, where
I{I + 1)is the eigenvalue of L °.

SU(3) possesses two Hermitian O(3) scalar operators® of
third and fourth order in the group generators, respectively,
0? and QY, which however do not commute and so cannot
be diagonalized simultaneously, except when acting on
states corresponding to nondegenerate / values.

As basis vectors for the representation (p,g) we use the
kets |p,g;/A,,m) (or |L,A,,m) if confusion is excluded), where
m is the eigenvalue of /, and A, is the supplementary label
needed for their unique specification. We choose 4, to be the
eigenvalue of O .

An appropriate apparatus for obtaining the O 9- and
Q %-eigenvalues consists of the /-shift-operator technique, de-
veloped by Hughes.">” The SU (3) shift operators O = *

(k = 0,1,2) shift the eigenvalues of the O(3) Casimir operator
L2by + k, and leave m unchanged, i.e,,

Oﬂl/{l’m>~|l+k»/il+k,m>' (2.8)
Since the eigenvalues of O and Q¢ are m-independent, we
can restrict our attention to SU(3) states which correspond to
zero m, and employ the kets |1,4,)=|/4,,m = 0). In this
case the shift operators read”

0?7 =1(6)"21{I+ 1),

—3g_ ity + g )—3(g_%

O N+ 1)=(+2)g-/y —q.il)

+ig_al? =gl ),
O 2/ + 1) +2)=(6)"2(1 + 1)(I + 2)g,
+2(/ + 2)(q Lo +q.d-)
+(g 0% +q..0%),

+q+”12 )

and
O *=0=*%_, (k=12). (2.9)

The O ¥-operators are linear in the g-generators. In other
groups where shift operator techniques have been used,®°
only operators linear in the tensor components were consi-
dered. In the following we construct shift operators Q ¥
(k =0, + 1, + 2) which, on the contrary, are quadratic in
theg,’s.

A first way to find the Q ¥’s, is to prescribe that they
must be of the form

Qfi=aq; +bg, g 1+cq.29 >
+dg_igol. +eq_ g1l +/9..190
+8q. 4 d_ +hq I’ +ig_rq)%
+igk 1% + kg gl + R, (2.10)
and to require that they satisfy the commutator relation
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[L20%] = k(2 +k+ 1)Q% (2.11)

The expression (2.10) is the most general operator up to
fourth-order in the generators and quadratic in the q,., which
commutes with /,. The linear equations in a,b,...,A, generated
by (2.11), have a nonzero solution (up to an overall multipli-
cative constant) for k = O, + 1, + 2. For the case k = 0, one
obtains, besides the Q  operator of Racah, also the Casimir
I, as a solution. An easier way to construct the Q ¥ is to use
the general formula of Hughes,” which gives immediately
the expression of a shift operator in terms of a (2 + 1)-di-
mensional tensor representation 7 (i) of O(3). In order to
obtain operators which are quadratic in the g,., we define a
five-dimensional tensor representation as

T(2u) =43 = [gXq];
=c Yy (2m2my|2u)q, G, (—2<p<2),
o (2.12)
where ¢ is an arbitrary constant. If we putc = — 7/v/2 and

use the relations (2.5), we obtain

(2)

95 =90 —q19-1— 29,29 >+ Yo,
qi124i140~6 qi29¢x—9(3/2)”2[¢
9%, = —29, .90+ (3/2)*¢%, |, (2.13)

satisfying the commutation relations [/ +, ¢f5,] = [(2 F u)
X (3 i,u)]”zqf’i 1

In terms of the coupled tensor ¢'”, the shift operators
Q f can be written as follows (again we restrict our attention
to operator forms valid when acting upon m = 0 states):

Q9 =2U(I+ 1)gf — 6"%g® 1, +4% 1)
—6'72g 1% +q%,1% ) 81,1,

O/ 4+ 1)=(+2)q% 1. —q% 1)
+(q?, 0% —q%,1%),
Q2+ 1) +2)= 6" + 1)l + 2)g?
+200+2)(g2 1, +4%,1)
+ g2 0% +4%7,0%)
and
CE=0% ., (k=12) (2.14)

The shift operators are only determined up to an overall
multipicative constant, and the scalar shift operator Q7 is,
moreover, only determined up to an additional term in L *.
Here, Q¢ corresponds to the choice made by Hughes'” and
Racah.® Investigation shows that there exist certain rela-
tions between the quadratic shift operators Q ¥ and the linear
shift operators O § (quadratic and linear refers to the order of
g, )- Those relations, which may be regarded as an extension
of Eq. (45) of Ref. 1, are

S 2=11/2(6)"32 — H](0; %09 - 0903, (2.15)

! = (1/2(6 )”21)(01— 100 1—1 I l) {2.16)
= (1/4(6)"/3(0 20 /11 + 1)

—orLorvii— 1%, (2.17)
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QY =[1/RI+ i[O 0 /1P —0 0 /(1 + 1]

+ 7204+ V), — 6l (I + 1)21* + 21 +9) (2.18)

= [1/421+ ) [0 50 /(1 + 1)1 + 2)?
—0,50,7 Y11 —17)
— 72217 + 21+ 3), + 61 (I + 1)(41* + 41 + 3).
(2.19)

In this respect the Q f-operators are not independent objects:
they can be expressed in terms of product operators of the
type O 5, ;0. However, in the next sections we will show
that it is sometimes much more practical to work with the
Q } instead of the operator products O ;, ;0. The main rea-
son for this lies in the degree of the operators: the Q ¥ opera-
tors are in general of fourth degree in the generators of SU(3)
[see Egs. (2.13) and (2.14)] and the products O ¥, ;07 arein
general of sixth degree in the generators [see Egs. (2.9)].

3. RELATIONS BETWEEN MIXED PRODUCT
OPERATORS

In Refs. 1 and 3 relations between shift operator pro-
ducts were introduced. The relations (35)-(48) of Ref. 1 allow
one to calculate in general the O {- and Q 9-eigenvalues for
cases where there is no /-degeneracy.? They contain triple
product operators of the type O ;37,35 O ¥, .04, which arein
general of ninth degree in the generators, and were extremely
tedious to calculate. The relations between scalar and nons-
calar quadratic operator products of the type O §, ;07 [Eqgs.
{2.2}(2.8) of Ref. 3] allow one to calculate in general the O 9-
eigenvalue even in case of twofold and threefold /-degener-
acy. However, those relations were not sufficient; triple pro-

J

duct relations were still needed. To avoid this difficulty we
introduce relations between mixed product operators of the
type Of, ;Q and @/, ,O7F. To construct such relations all
products are reduced to a standard form, which consists in
choosing a particular order for the generators of the group.
Here we have taken the order
qir>q9_>>9.1>9_,>qy>1, >1> 1, Forinstance, the
standard form of ¢ _,q, , i8¢, ,¢_, + 3/_. Once all the
terms of the operator products are transformed into the stan-
dard form [making use fo the commutators (2.4) and (2.5)], it
is rather straightforward to find relations between them. In
such relations there can also appear a term in 1,0} and in
O;,where s = j + k is the total shift value of the relation. If
the relation is of the scalar type (i.e., s = 0}, a term in I, the
third order Casimir invariant appears. We give here the ex-
pressions of the relations in the case s<0. Using the transfor-
mation rule O, %= O* , ,,,” one can easily obtain the re-
sults for s > 0. We find one equation with s = — 4, two with
s = — 3, four withs = — 2, six with s = — 1, and eight
with s = 0/ These are the maximum number of independent
equations between the objects O f, .Q/ and 0/, O: any
other relation between them must be a linear combination of
the independent equations. To restrict the number of formu-
lae, we write down only half of the equations: the other half
can be obtained immediately by using the transformation
rule “/—~ — I — s — 1.” This rule, valid for every relation
between shift operators, can be summarized as follows:

(i) all the operator products O/, , Q¥ (resp. @/, ,O%)
are replaced by Q 7, 0’ (resp. 0§, ;07);

{ii) all the other operators in the equation (e.g.,
1,03, 03, 1) are kept unchanged;

(iii} in every coefficient / is replaced by —/ —5 — 1.

A proof of this rule can be found elsewhere.'® The final results are:

withs = — 4,

0,50, *—Q,730;7*=0; (3.1)
withs = — 3,

(=30, 40, '—(1-1Q,-%0,7*+207.45,0,*=0; (3.2)
withs = — 2,
(I 4+3)07_,0, 2+ 120,70, ' — (I — 1)@, %07 + 216(6)/*(I — 1)I,0 72 + 54(6)"/%(l — 1)0 2 =0, (3.3)
J6)' 20 +3)Q9_,0,*+ 120,240, " — }(6)'?

X (I — 1)0 209 + 216(6)3(l — 1)1,0 [ * — 6(6)"/%( — 14l + 81> — 20/ + 39)0 > = O (3.4)
withs = — 1,
(=507_,Q/ '—(-1Q;/'07+ 120,07 /(I -1}

— 216(6)!/3(1 — 1)/ — 2),0 [~ * + 18(6)'21 (1 — 1) — 2){1 — 4)0 ' =0, (3.5)
—46)"( —5)Q7 0,7+ 46" —1)0,7'Q — 120 1,0 /I — 1)

+216(6)"2(1 — 1) — 2),0 ' — 6(6)VV2 (I — 1)(4]* — 321 — 3)0 [ ' =0, (3.6)

(+409 Q' =19, 102 —2(6)/70,'Q0+ T26) /(I + 1,0 7' — 6(6)/*1 (1> + 21> + 28 + 18)0, ' =0;  (3.7)

and with s =0,

1(6)'/%(1 — 4)07Q 79 — 1(6)'21Q 709 — 360 ', @~ '/1* — 144(6)V/21 (I — 2),0°¢
+2X 613 + 1)2] — I, — 12(6)2 (I + 1)(21% + 21 +-9)0° = 0, (3.8)
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1(6)'/%(1 — 40007 — 4(6)2107Q 9 — 360+, 0 7 /1> — 144(6)'/*1 (I — 2),O?

+2X 611+ )20 — 1), — 12(6)' 1 (I + 1)21* + 21 + 909 =0, (3.9)
}(6)'/%(21 — 5)0007 — 4(6)"/(21 — 1)Q707 + 360 3, Q 7 ¥/1(1 — 1y’ — 144(6)'/*(2] — 1)(2] — 3),0?

— 2 6%1 (2] — 1)(1 — 3)I, + 12(6)"/*1(10/* — 521* + 49/ — 33)07 =0, (3.10)
1(6)'%(21 ~ 5)Q707 — (6)"/*2 — 110707 + 360 £30 7*/1*( — 1!

— 144(6)!/2(21 — 1)(2] — 3)L,O ) — 2X 6°1 (21 — 1)1 — 3)I, + 12(6)"/*1 (101 — 521* + 491 — 33)07 = 0. (3.11)

There is a certain connection between the newly derived re-
lations (3.1)~3.11) and the relations between triple product
operators previously given by Hughes.'! For example, Eq.
(3.8) is reproduced by combining Eqs. (40) and (42) of Ref. 1.
Indeed, if we eliminate the term (O 9)? from Egs. (40) and (42)
or Ref. 1, and transform the remaining triple product combi-
nation as follows:

01+_l101+—1201‘2 014050/

Ml -1y 1141y
_01t11{01+101 ( 01+1201_2)
I\ ig+12 \ 1i—-1py

= —46)'70,2 Q7 /I,

where we made use of (2.17), we obtain exactly Eq. (3.8). In
the same way, Eq. (3.9) can be reproduced from Eq. (4.1) and
(4.3) of Ref. 1. An important feature of the relations (3.8)-
(3.11) is that I, comes in and it is known? already that one
needs the I,-eigenvalue to calculate the O -eigenvalue.
Hence, in order to introduce /5, Hughes needed triple pro-
duct operators of ninth degree in the generators. We, how-
ever, can introduce /; in relations that contain only opera-
tors of seventh order in the generators, which are much more
easy to construct. As a by-product, we obtain from Egs.
(3.8)—(3.11) the following simple relations between shift oper-
ator “commutators’”:

+ 1 —1
01—1 1 QI)IOI

=(1/6(6)”2)12(1——2)[0?,Q?], (3.12)
0:.hQr ' -0

= —(176(6)" ) + 17(/ + 3)[ 09,0°]. (3.13)
0/5Q,7°-0,2%30.?

= — (1/6(6) 13 — 1420 — 3)[0%Q7],  (3.19)
0750 — Q7302

= (1/6(6)"/2) + 12( + 2720 + 5)[0%Q°],  (3.15)

4. RELATIONS BETWEEN PRODUCT OPERATORS OF
THETYPE QF, ,Q/

It is obvious that there also exist relations between pro-
duct operators of the type Q 7, ,Q%( — 2<j,k< + 2). The
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way to construct them is very similar to the one explained in
Sec. 3. Due to the fact that a commutator [g,, ,¢, ] contains no
g-term, it is easy to predict that an O 7, ,, O ["-operator
(m + n =s), a Q j-operator, and, if s = 0, a term in (1,)*, I,,
and L ? can appear in the relation.

Finally we obtain one independent relation with
s= — 3,one withs = — 2, two withs = — 1, and three
with s = 0. Again we do not give them all explicitly: the
missing ones can be easily found from the relations (4.1)}-4.5)
by means of the transformation rule “/—~> —/ — s — 1.

The results are (valid when acting on m = 0 states):

withs = — 3,

0/ 4Q,'—0.7.40,7*=0; (4.1)
withs = — 2,
— 46)'"2( — 1) —2)Q, QY

+6(2/— 1)@}
+56/(1—1)2] — )0, 40"

T+ 1)Q7 .00

126)2 (1 — ) =2)I + )2l - 1)@, *=0; (4.2)
withs = — 1,
—36) — )2/ - 3)Q,'Q}

+4(6)' %21 — 1)1 - 3)Q7_, Q!

+ [61/(1 = 12]1Q,t 50,2
—54[120 — 1/l — 1)]0,+_‘20f2

+6(6) (I —1)21° —221° - 314+27)Q'=0 (4.3)
withs =0,
1204+ QW - [3(—-2/0+ 17105507

+ 3+ 1)+ 311712, 07!

— 6121 + 1721 + 1))

+ 61(1 + 127 + 10?7

+ 271+ 1)20 + 1)(1* + 1 + 8)Q7

— 648121 + 1221 + 1) 2 + 1+ 6),

+ 54130 + 17201 + 1)(21% + 413 + 3512
+33/4 135 =0,
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W+ 2HQD2 + [3(21+ 3)2 + 5)1/(1 + 1)°]
XQ M@+ B+ 3+ )+ 2710550,
— 6 + 1P/ 4 2721 + 3L,
— 6/ + 1)(I + 2)(2] + 309
— 9+ 1) +2)
X (1617 + 431% + 39/ 4 36)Q°
+ 648(1 + 1/ + 2)(2 + 3)?
X217 + 1112 491 - 6)I,
— 541(1 + 1Y + 2)(4/° + 481°
+ 1621° + 30413 4 31217 + 99/ + 108) = 0. (4.5)

When looking back on {2.15)—(2.19), we may conclude that
Eqgs. (4.1)—{4.5) are in fact equivalent to relations between
quartic product operators of the type

Ol itksmOT ;+OF, ;04 Without the Q f-operators, it
would have been unimaginably difficult to find relations
between such quartic operator products. Notice, that in Egs.
(4.1)(4.5), the coefficients of the @/ . , Q ¥-operators are the
same as the corresponding ones of the 0/ , , O ¥-operatorsin
Egs. (2.2){2.8) of Ref. 3. This is because the Q f-operators
can be constructed out of the O ¥-operators by replacing q.
—¢'? ( — 2<p< + 2). One might think that for this reason
the equations in Q@ , , @ }- and O/, , O *-objects should co-
incide completely. This is not true, since the commutators
[¢!?,¢'] are not the same as the [g,,,¢, ] commutators. More-
over, the operators ¢! (u = — 2,..., + 2),l,,/, donoteven
form a Lie algebra. For instance

(9.0 ] = 184, — 6(6)" a1 — 69 L. + 64y
J

- 48(6)“2q_2‘1+1 - 3(6)”24+14—11—
— 144(6)' g g _»l_ +369_q0],
+ 24(6)'%q_,q., \Jo — (243(6)'2/2)I_I,
— (675v/3/42)] _.
These commutators explain the extra terms in (4.1)4.5).

5. APPLICATION OF THE SHIFT OPERATOR PRODUCT
RELATIONS

In this section we show how the introduced relations of
the previous sections simplify the O 9- and Q %-eigenvalue
determination for general (p,q) representations of SU(3). Be-
fore considering the maximum / state, we first remark that
since the representations (p,q) and (p,p — ¢) are mutually
contragradient, it suffices to consider representations (p,g)
where p>2gq.

For reasons, explained in Sec. 2, we restrict our atten-
tion to SU(3) states which correspond to m = 0, and employ
the kets |/A >, where A {? is the O {-eigenvalue:

AP = (APONADY (= 1,.m) (5.1)
If there is no degeneracy (n = 1), we simply write /> . The

eigenstates of Q0 will be denoted by |Lu\’> (i = 1,...n),
where

1 = L1 Q 7 huf) (5.2)

A. The maximum /-state of (0,q)

Until now, one needed at least on triple product relation
in order to calculate 4,.>~* With the aid of Egs. (3.1)-3.11)
things are going much easier. Indeed, if we let the trans-
formed relations (3.8) and (3.10) act on the |p> state, and if
we multiply on the left by <p|, we obtain respectively,

46)'2(p + SW,p, — 4(6)'*(p + 1,4, + 144(6)' *(p + 1)(p + 3KL)4,

—2X6%p + 1°p(2p + 3)(L5) + 6(6)'%p(p + 1)(4p* + 4p — 94, =0, (5.3)
16)'2(2p + TV, — 46)"/%(2p + 3,4, + 144(6)'/*(2p + 3)(2p + SIL)A,
+2X6%p + 1)2p + 3 + 4{L5) — 6(6)'*(p + 1)(2p + 3)(10p> + 67p + 96)4, = 0. (5.4)

(1,) and (I,) are short notations for
<12> = <P|12|P) = <p:q§1/llam|12lp’q;1»’ll’m>’
(L) = <P’13|P> = (P,q;l/lnmllslpyq,lﬂnm)’

whose values are determined by (2.1) and (2.2). Eliminating
the product 4,1, from Egs. (5.3) and (5.4), we obtain

[3(6)'/%(1) — (6)*p + 1)ip + 3)14,

+ 324(p + 1)(2p + 3){13) =0, (5.5)
which yields a unique solution
Ay = +1(6)2p + 1)2p + 3)(p — 29) (5.6)

Remark that we did not need the Q {-eigenvalue to determine
A,. Out of Eq. (5.3) we obtain immediately,

M, = —2(p+ 1)[2p° — 2(4g + 3)p*
+ (8¢ — 12 + 27)p + 124°]. (5.7)

Once 4, is known, we can calculate the 4, _,,A%_,,49_,,
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and 1 Y_, with the relations in 0/, , O %-products. This is
carried out in detail in IL

B. The eigenvalues ., , andu? ,

The eigenvalueu, | can still be calculated without the
help of a relation between O/, , O {-objects. But the proper
way to calculate the 4\Y_, (i = 1,2), a case where there is a
twofold degeneracy, is by using the relations (3.1)-(3.11).

To obtain the u, _,, one can make use of Egs. (45) and

(46) of Ref. 1 and finally get [see Ref. 2, Eq. (14)]
Bp_1 = @ - 1|Q2—1|P— 1)
= —2[2p* — 429 — 1)p* + (8¢ — 28q + 69)p*
+ (28¢° — 129 — 27)p + 124%]. (5.8)
For further calculations, we still need the action of Q , 'on

the state |p > . This is found immediately from Eq. (2.16),
where we make use of (5.6), (I1.3.2), and (I1.3.3):
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Q. 'p) = —2(6)’plp + 1)(2p + 1)p — 29)
X[lp—9g)q/20 —1)]'"?p—1) (5.9)
In the calculations, the following relationships® have been
used:

(l,a,,m]O,jrkkOﬁkll,a,,m)
1
=— Z [{I+ k,b,+k,m|0,+"|1,a,,m)|2

LTI

=Bu Y |(ha,m|O |l + kb, m)|?,

b
with By, = (2 + 1)/ + k + 1),

Note that the choice of the phase of the matrix element
(p — 1|0, '|p) determines completely the sign in (5.9). To

calculate thep!)_ ,, we will make use of the relations between

product operators of the type 04, , Q@ Fand QF, ;074 Firstof
all, we obtain from Egs. {2.16), (I1.3.2), (I1.4.1), and (11.4.9),

26)p -1, lp—1)
=2(6)""*2p + Vo — 29)(b ) 1P — 240 ;)
+b67 5P =240 ,))
— 66T (b)) lp — 241" 2)
—bP 5P =240 ,)), (.11)

where the notation of II is adopted. The subsitution of
(IL4.11)in (5.11) gives

Qp—l _1)
={lpl+3)P*+p—1)— 4> —2p — 1)p — q)g)| +)
+p+3p—29) )}/

(5.10)

—p—5Q,05_i1lp—+p—-10;
+ 72(6)1/2(P lip — 5,0 p—l

20,
— 1) — 6(6)'/*(p —

To reduce this equation to a useful form we employ Egs.
(IL.3.2), (5.12), (IL.4.1), (2.1), and (5.14). We finally obtain
Qp 2| —)
= —24(p —29)[(p* +p — 1)N7p° — 10p* + 6p — 1)

—4glp —qp’(p — 2)1| +)/(2p - VI

— 2[{4p°® + 10p* + 182p® — 415p% 4 321p — 78)

—4q(p — q)4p’ + 4p* + 1Tp — 1)]| — )/(2p — 1). (5.15)
The diagonalization of (5.14) and (5.15) is straightforward.
There follows:

w_, = —2[(2p* — 12p° + 121p* — 165p + 78)
— 4900 —qlp + 1)(2p + 1)]

+ (=124 (i=1,2), (5.16)
where ¥ is defined by
y=p'(4p* —4p’ + 5p° —2p + 1) — 44(p — q)
X(2p* + 5p* — 4p* —2p + 1)
+44°p — 9V’p°
For the (6.2) representation, we obtain
ud = —8[133 4 6(14569)'/?],
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—1) —
Hp* —

2(6}1/2Q2_ ZOp_~l

2p(2p + Vglp — q)2p — 1)]'?,

where | + ) and | — ) are short notations for

[£) =alalp =240 ,) +al s p— 2400 ,)

(5.12)

and a},“_ , is defined in (I1.4.1). From Eqgs. (2.15) and (5.6) we
obtain immediately,

2(6)'*(2p — 1)@,
X —29)|+)

P=26p + 1)
—6(6)"%T | —)
To solve the eigenvalue problem it suffices to know the ac-
tions Q) ,| +)and Q7 _,| — ). A first relation follows
from the action of Eq. (3.4) on |p):
16)'%p +3)05 | +) +120,7,0,7'|p)

— 46)"%p — 10,770 |p)

+216(6)'%p — NI,| + ) — 6(6)'/*(p — 1)

X (4p> + 8p* — 20p + 39)| + ) = 0.

(5.13)

By using (I1.3.3), (5.7), (5.12), and (2.1), this relation ends up
in as

Q5 2| +)
= —2{[(4p® — 62p* + 326p> — 487p* + 321p — 78)
—4q(p — q)4p> + 4p> — 19p — 1)]| +)
+ 1200 + N)p —29)T 2 =) }/(2p — 1). (5.14)

A second relation follows from the action of the
“l—> — 1 — s — 1” transformed relation {(3.7) on the [p — 1)
state:

—1)

5p° +35p — 49)0, Y [p — 1) =0.

I

which is in accordance with the numerical results of
Hughes.” In the same way, closed formulae can be calculated
foru_ , (i = 1,2). But since our main object was to show the
usefulness of the relations between operators of the type
0/, Q% we do not like to report on that here.

C. The low angular momentum states

An intense study on these states was madein I. We want
to show here how the triple product relations can again be
avoided on account of the newly introduced relations. In the
case that p is odd (g#0, g# 1) or p is even and g is odd, we
know that the eigenvalues A, and 4 { can be expressed in
terms of 4, (see 1.5.15 and 1.5.21).

From (1.5.19), we obtain

(1{O;'0 1) = 864(4(1,) + 1) — 44 7. (5.17)
So, there follows from Eq. (2.18),
3(1Q01) =A% — 2732121, + 19). (5.18)

If we let Eq. (3.8) act on | 1), multiply on the left by (1|, and
substitute the result (5.18), we find the following equation:
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A [AT —216(3(L,) + 1)] — 25.3%(6)"/%{1,) =0, (5.19)
which is in agreement with (I.5.24). The solutions for A, are
written down in (1.5.25).
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A general study of the representations of the graded Lie algebra of para-Bose oscillators is given.
Besides realizing the standard representations, we also find some interesting indecomposable (not

fully reducible) representations.

PACS numbers: 02.20.Sv, 02.20.Qs
I. INTRODUCTION

The algebra of para-Bose oscillators is a prototype ver-
sion of a graded Lie algebra. The Fock representation has
earlier been obtained' by realizing that an enveloping alge-
bra in this case is isomorphic to the algebra of Lorentz group
SO(2,1) in three dimensions. The representations of the co-
herent states of para-Bose oscillators have recently been ana-
lyzed.?* The present paper deals with an analysis of the re-
presentations of this graded Lie algebra of para-Bose
oscillators which can be realized on the space of the universal
enveloping algebra. Besides obtaining the standard represen-
tations we also find some very interesting indecomposable
(not fully reducible) representations. We also exhibit some
finite-dimensional representations. We follow the method
and notations of the general analysis of indecomposable re-
presentations carried out by Gruber and Klimyk.* Since the
method is quite general, it can easily be carried over to the
study of other graded Lie algebras as well.

In this paper a general approach is taken in order to find
the indecomposable representations for para-Bose oscilla-
tors. In Sec. Il we summarize the known properties of the
algebra of para-Bose oscillators, the Fock representations,
and the representations of the coherent states. In Sec. I1I the
most general representation of the algebra of para-Bose os-
cillators on the space of its enveloping algebra (2 is obtained.
Representations which are induced on invariant subspaces
as well as quotient spaces are discussed briefly. In Sec. IV, we
show how the standard representations are realized in this
method. We obtain some interesting indecomposable repre-
sentations. We also exhibit some finite-dimensional (nonuni-
tary) representations. In Sec. V we discuss the representa-
tions of coherent states and some possible generalizations.

1. PARA-BOSE OSCILLATORS

Para-Bose oscillators® satisfy (the commutation rela-
tions®) the equation of motion

[G,N] =a, [a+’N] = _aT’ (1)

where a is the annihilation operator and the “number opera-
tor 7 N is defined by

2N = {a,a'} , {2)

where the braces { | stand for the anticommutator. The
creation operator @' and a do not satisfy the commutation

2 Permanent address: Matscience, Madras 600020, India.
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relation of the normal harmonic oscillator. It can easily be
worked out by repeated use of Egs. (1) and (2) that

[a,a™ ] = 2Ka™X ! (3)
and

{a,a*+ '} = a"¥ (2K + {a,a'}). (4)
The normal Fock representation has been obtained earlier’
by recognizing that

[H,%a”] = %GTZ,

[Hla’] = —id°,

[3a™1a®] = — 24,
i.e., 1a™,1a% and H =\N close, and the algebra is that of the
Lorentz group SO(2,1). By using the standard representa-
tions of SO(2,1) and the fact that the spectrum of H is positive
definite, the representation for a and @' is obtained by ex-
tracting the square root.

If b, denotes the lowest value for the spectrum of the
Hamiltonian 57 related to N by

(5)

H =N + by, {6)
then we obtain
Qonzny1 = [2(n + bo)] 1z, {7
Ao 120 = (2n)'/?
and
(2n|la,a']|2n) = 2b,,
(2n + 1|[a.a"]|2n + 1) = 2(1 — by), (8)
so that
0 (26 O 0 0
0 0 22 0 0
“lo 0 0 [2be+ 11V 0O ®)

It is clear that for b, = I, the distinction between odd and
even matrix elements disappear and we get the standard har-
monic oscillator. Properly normalized para-Bose coherent
states (eigenstates of a) are obtained as>*

la) = {D{|a}?} ~"/*D (aa")|0), (10)
where

(Z|D|0) = (aZ)' ~ ™I, (@Z)+1,, _;(@Z)}, (11)
where I, is the modified Bessel function of the vth order, and
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Z is a complex number. Here |0) is the vacuum (extremal
state annihilated by a).

lil. REPRESENTATIONS ON 2

In this section the most general representation of a
para-Bose algebra on the space of its universal enveloping
algebra £2 will be determined. According to the Poincaré—
Birkhoff-Witt theorem a basis for the universal enveloping
algebra of the para-Bose algebra can be chosen as’

n:{a"a"N",mn,r =0,1,2,--.}={X (n,m,r)}, (12)
where X (n,m,r) is an ordered (tensor) product of the elements
of a’,a and N. The values (n,m,r) = (0,0,0) denote the identity
operator 1 (this corresponds to the vacuum). An element
yef? is called an extremal vector for the representation p on
2 if

pBYy=0, B=a or a' (13)
for p(a') and/or p(a). The basis for the universal enveloping
algebra can be written as’

nN=0.0_0,, (14)

where 2, =a'"2_=a™ and 2, =N".
The basic commutation relations Egs. (1) and (2) can be
used to derive

amNr___(N+m)r m’

a"N"= (N —nya™, (15)

which in turn can be used to get the following basic relations:

pla"X (n,m,r) =X (n + 1,m,r), (16)
pla) X (2K,m,r) =2K X (2K — 1,m,7)

+ X (2K,m + 1,7), (17)

pla) X (2K + 1,m,r)
=K —m) X (2K,m,r) + 2 X 2K,m,r + 1)
—X(2K+ 1,m + L, (18)
pIN) X (nm,) = (n — m) X (nm,r) + X (n,m,r + 1). (19)
This representation is in general infinite dimensional, with
neither a highest nor a lowest weight. Under the action of the
operator p of this representation the powers m and r remain

the same or increase. Thus, each of the subspaces ¥ (m,r) of
£,

Vimr):{X(nm + k,r + ky) m
n,k,,k, = non-negative integers}, (20)

is an invariant subspace with respect to the action of p on £2,
and induces subrepresentations on these invariant sub-
spaces. Actually p induces representations on the quotient
spaces

Vmr)/Vim',r),

m<m’, r<r, V(0,0)={2. (21)

The representations which are induced on the invariant
subspaces V (m,r)are all algebraically equivalent to the repre-
sentation p. The representations induced by p on the quo-
tient spaces
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0/V(m,r) (22)

are algebraically inequivalent to p. The representations on
these quotient spaces are obtained from Eqgs. (16)}(19) by
formally setting

X(nm+ k,r+ k,)—0, k k>0 integers.

We will discuss some of the representations induced on the
quotient spaces given by Eq. (20) in the following sections.

IV. REPRESENTATIONON 2_02_

The representations on {2 f2_ are defined through the
relation

p(N)1 =41, AeC, (23)

i.e., the relation (N — A )1 generates a left ideal I, of 2. Then
2];,~02,0 . Abasis for 2 2 _ can be chosen as

2,02_:{X(nm),n,m>0 integers}. (24)
On thisspace (2, {2_, the representation p induces the repre-
sentation p’:
p'@") X (nym) = X (n + 1,m),
Pla) X(2Km)=2KX (2K — 1,m) + X (2K,m + 1),
PlaX2K+1m=2K—-—m+A1) X(2K,m)
—X2K+1m+1), (25
PN)X(nm)=A +n—m)X(nm).
The representation p’ is infinite dimensional and the opera-

tor p'(N ) is diagonal, and has no extremal vectors. The sub-
spaces

Vim):{ X (n,m + K ),K>0 integers] (26)
are invariant with respect to p'. The representations which
are induced by p’ on the quotient spaces {2, £2_/V (m) are
obtained from the representation Eq. (25) by setting formally
X (n,m + K }—0, for all K>0 (integers). We shall now consid-
er the special case of representations on 2 2 _/
V{m = 0)~{2 . A basis for this is given by

2 :{a"n=0,1.2,.]. (27)

We obtain the representation p; , from Eq. (25) as (suppress-
ing the indices which should cause no confusion)

pIN )1 =41,
pla) X (n)=X(n+1),
pla) X(2K)=2K X (2K — 1), (28)

pla)X2K+1)=2(K+A)X(2K),
pIN) X (1) = (A + n) X (n).
It can easily be verified that Eq. (28) satisfies the basic

commutation relations (1) and (2). Moreover it holds for the
commutators

[plalpla®)IX (2K + 1) =201 - A)X (2K + 1),  (29)

[pla)pla’ )1 X (2K) = 24X (2K), (30)
and as before we realize the standard oscillator for 4 =}
(actually A = b,). To get a more symmetrical form for g and

a' for the case of irreducible representations ( — A¢N) we
define
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Y(0)=X(0),
Y(1)= (/21X (1),

K 172 172
Y(2K)=[H(2ﬂ] [H 2(:+,1] X(2K),  (31)

J=1 i=0

K —1/2 K —1/2
Y2K+1)= [H (2j)} [H 2044 )] X(2K + 1),
j=1 =
for K = 1,2,3,--- to obtain

pla") Y(2K) = [2(K + A)]'? Y (2K + 1),
pla’) Y (2K + 1) = [2(K + 1)]'2 Y 2K + 2),

pla) Y(2K) = (2K)'2 Y 2K — 1), (32)
pla) Y(2K 4 1) = [2(K + )12 Y (2K ),
PIN) Y (n)=(A +n) Y(n),

which is the standard representation given in Eq. (9). It is
interesting to note that we did not extract any square root
nor did we explicitly use SO(2,1). These are automatically
defined in the enveloping algebra. To appreciate the power
of the general method, let us construct some novel represen-
tations on the quotient space p, ,/V (m = 1). The basis is
consiructed as

{X (n)=a™, Y(n)=a'a, n>0 integers}. (33)

From the physical point of view, this amounts to taking two
vacua, the usual one and the one particle state as the second
vacuum. Equation (25) yields the following representations:

plah) X(n)=X(n+1), (34a)
pla") Y(n)=Y(n+1), (34b)
pla) X (2K )= 2K X 2K — 1) + Y (2K), (34c)
pla) Y(2K)=2K Y (2K — 1), (34d)

P@) X (2K +1)=2(K + 1) X (2K ) — Y(2K + 1), (34e)

pla)Y(2K + 1) =2K + A — 1) Y(2K), (34)
PIN) Xin) =4 + n) X {n), (34g)
PIN)Y(r)=A +n—1)Y(n). (34h)

The X and Y are almost decoupled except for the important
relations Eqgs. (34c) and (34¢) which couple these two. The
situation can be best explained by Fig. 1.

The representation for a, a” and N can easily be seen to
be the following:

PA Y, ’A Y,
1z 1 1 Ed
oo = - <217 4~—-—J—_#
£ 4 2 2
,
N 1 !
\ ~1, 1 '14
1 | !
2 oz : 2000 1, 2
D e -
1 1 1 1
X, X, X, X,

FIG. 1. Representation induced by p, , on the quotient space £2_ /
V {m = 1). The action of ' is given by solid lines. The action of ais given by
dashed lines. The numbers given are the matrix elements of the transition.
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I-OZ 02
I, O
T ) 2
pla') = o, L o, , (35)
\02 02 12 .
A 0 1 .
0A-1"
I T |
y A+10,
P(N): ] 0 /ll ’
_____ .-
! '—ﬂ.»—-!.—n 0 \
]
- - Q _/1_+_n_—_h_]
(36)
, (37)

_ 00) . (1 O)
02“(00 - B=loy
and each block acts on the two components
X(n)]
, =012,
[Y(n) "

One can easily verify that this representation satisfies the
basic commutation relations Eqs. (1) and (2).

From Fig. 1 it is clear that Y, is an extremal vector. To
see whether there are other extremal vectors (to give rise to
an indecomposable representation) we realize that

plafXo+£Y,) =0, Yo+ §2(4 ~1)Y,=0, (38)
which gives

E= — 1724~ 1), (39)
and so

pla)Y, =0, (40)

pAZ =0, Z=X,—(1/2A 1) 7Y,

However, the representation is reducible (decomposable) to
the sum of

{Y, =a™"Y, n=0,12,},
and (41)

{Zn = aTnZ()y n= 0,1121'"};
each of these resulting in the correct commutation relation
for the case A # 1. For A = 1, the representation becomes
truely indecomposable since £ blows up making the combi-
nation Z, not possible, and thus Y, cannot be reached from
Y, while Y, can be reached from Y,

Let us now study the interesting representations which
are induced by Egs. (34) on the quotient space modulo the
invariant subspace spanned by the basis elements ¥. We find
that (setting formally Y—0)
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pla’) X (n) =X (n + 1),

pla) X (2K)=2K X (2K — 1),

pla) X (2K + 1) =24 + K) X (2K ),

PIN) X (n)=(A + n) X (n). (42)
From the second and the third of these equations it is clear
that for A = — [, I>>0 integers, we realize indecomposable
representations since p(a) does not take X (2/ + 1) to X (2/).
This can be easily visualized from Fig. 2. The point is that
while a' takes the states continuously up, the action of a
stops at the point/ + 1 (i.e., 2/ + 2 stepsfrom — /),i.e., while
a' takes I—+/ + 1, a will not trace back / + 1—/. Equations
(42) in turn induce a representation on the quotient space
modulo the invariant subspace which is spanned by the basis
elements Y (2/ + 1), Y (2! 4 2),---. This representation is irre-
ducible and of dimension 2/ + 1. On the quotient space Eqs.
{42) can be cast in a more symmetrical form by defining

W(0) =X (0),
Wl =(1/Vy -21)X(1),
W(2K) = f[ (2r)]_m[ 1 2(—-l+r)]_1/2X(2K),

r=1 r=0

K=12..,l

wek+1={]] @] "

x[ﬁ 2(—l+r)]_l/2X(2K+l), (43)
K=12,.0—1,

and we get
plaW (2K )= [2(— I+ K)]'?W (2K + 1),
plaYW (2K + 1) = [2K + 2]V*W (2K + 2),
pla)W (2K )= [2K 1'*W (2K — 1), (44)
pla)W (2K + 1) = [2(— 1+ K)]'?W (2K,
PINYW (n)=(~1+n)W(n).

To illustrate the point let us look at the explicit repre-
sentation for A = — /= — 2,/ =2 when we get

0 0 0 0

V-4 0 0 0 0
pah=] 0 v2 0 o o}
0 0 v =2 0 0
0 0 0 v4 0
pla) = [pla"]’,
and
-2 2 2(-+) 28 2842 2
LR S S ---€--—4 - — - -
T T —-’0—“1—"—-’—”#— S
1 o o a? Qi g g e
2;; oo a(:':n

FIG. 2. Indecomposable representation for A = — /,/>0integer. The action
of a is denoted by solid lines and that of a by dotted lines.
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-2 0 o0 0
0 -1 0 0 O
piN)=] O 0 0 0 O (45)
0 0 01 0
0 0 0 0 2
For /=1 we get
0 0 O
plah=|v—-2 0 0} pla)=[pa"]",
0 v2 0
-1 0 O
p¥)=| 0 0 0}
0 0 1

The situation is reminiscent of para-Fermi algebra (its iso-
morphism with angular momentum algebra is well known®).
It can easily be verified that Eq. (45) yields the basic commu-
tation relations. In fact it has been shown earlier® that for
SU(2), given the spin j, there are two extremal vectors with
projections of j equal to — j and j + 1 and that the usual
angular momentum representation is obtained in the (2j + 1)
finite-dimensional quotient space.

V. COHERENT STATES

The representations on {2 {2, are defined through the
relation

pla)l =pul, ueC, (46)

i.e., the relation (@ — u)1 generates a left ideal I, of £2. Then
/1, ~02_ 12,,for which a basis can be chosen as

02, 02,:{X (n,r),nr>0 integers}. (47)
On this space is induced the following representation:
pla)l =pul,
pla) X (nr)=X(n+ 1,7),
pla) X 2K =2KX(2K - 1) +p 3 (;) X(2K,1),
I=0
pa) XK+ 1,)=2KX(2K,)+2X(2K,r+ 1)
(48)
T (r
— X(2K +1,]),
2, (1) 2K+ L1)
PNV X (n,r) =X (n,r + 1)+ n X (n,r).

This is again an infinite-dimensional representation and has
no external vectors. Since Eq. (48) describes basically the
action of @, @, and N on coherent states (eigenstates of a), in
order to solve for the coherent states we adopt a different
procedure. Guided by Eq. (28) we have to solve the equation

p(a)§=a§,
£=S [Cx X(2K)+Cop,, XK+ 1)) (49)

Using Eq. (28) we get the recursion relations

o\? 1
Cki1 = (7) mczx—n (50)

C =(£)2———1———C
’e2m\2) K+ 1)K+
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which can be solved to yield

2K
] 4+nK!
r=0
c —-(0,)2K+1 1 C
2K+ — 1\~ Y ‘o
2 K
A+ rK!
rl;[()( )

Equation (51) can be recast in the form of Egs. (10} and (11)
and gives the coherent states of the para-Bose oscillators. A
possible generalization is to look for the solution of the equa-
tion

pla)E = oE, (52)

where

E=Y CppnX2nm)+ S Cppy 1w X (21 + 1m).

(53)
This leads to the recursion relations
2n+2Co s omet = Convtm =0Co L 1mi 1y
Conm—1 +2n—m+A)Cy s 1 =0Co - (54)

We have not succeeded in solving these except for the case
when o = 0. Should we succeed in solving them, we will
realize some generalized coherent states.

VI. CONCLUSIONS

A general study of the indecomposable representations
for the algebra of para-Bose oscillators is made. Besides real-
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izing the standard representations, some novel indecompos-
able representations are derived.'® We hope to extend this
analysis to other graded algebras elsewhere.
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of the algorithm to the octahedral (cubic) subgroup is given.
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1. INTRODUCTION

Computations of physical properties for systems invar-
iant under a (nontrivial) space group or point group are made
easier by the use of functions having the same invariance
property. Great attention has been paid mainly by physicists
working in spectroscopy, crystallography, solid state phy-
sics, or quantum chemistry to obtain such invariant func-
tions in various cases (see Refs. 1-19 and references therein).
Our task here is to describe an algorithm which allows the
calculation of functions invariant under a point group of
0(3) [and more generally under any finite subgroup of O(n)]
and which are solutions of the Laplace equation. Such func-
tions will be referred to as invariant harmonic polynomials
(IHP).

Patera, Sharp, and Winternitz'® have given a basis for
all tensors transforming irreducibly under a given point
group [subgroup of O(3)]. They use the standard technique of
the so-called Molien function (to be surveyed in the next
section). [Many of their results had appeared earlier but their
paper is the first systematic and complete study for all the
point groups of O(3).] Their Sec. VI describes a prescription
to obtain a basis for the IHP out of their integrity basis.
(Their technique is based on previous results of Lohe and
Hurst.'?) Our algorithm is in fact equivalent to their pre-
scription; we shall give here the proofs which were skipped in
their paper.

To obtain IHP, different approaches have been used.
First, the IHP can be expressed as a linear combination of
spherical harmonics Y [*(6,¢ ) or in a Cartesian way as homo-
geneous polynomials in the variables x, y, z. Secondly, the
literature gives analytical'*'* as well as numerical'>-° ex-
pansions. To our knowledge, the most complete results have
been obtained by Dunkl" for the analytical aspect and by
Fox and Krohn'®?° for the numerical one. Dunkl has ob-
tained, for the cubic subgroup of O(3), the general expan-
sions of the IHP in terms of the Cartesian coordinates and in
terms of Y 7*. Moreover, he also obtains the expression for
the tensors transforming under the alternate representation
of the cubic subgroup. The contribution of Fox and Krohn
has been to calculate numerically the coefficients of the ex-
pansion for the IHP of the cubic subgroup of degree up to
200. (An earlier work'® dealt with the tetrahedral IHP.)

The next section shows how the information contained
in the Molien function combined with the existence of an
operator H, the harmonic projector, leads to a very natural
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algorithm for the computation of the IHP of any finite sub-
group of O(n). By applying this algorithm to the case of the
cubic IHP, we show in the third section the usefulness of the
method. The conclusion points out advantages of the
method.

2. THE ALGORITHM FOR THE GENERAL CASE O(n)

Roughly speaking, the algorithm splits into three sim-
ple steps: (i) compute the Molien function and the integrity
basis associated with it. (ii) in order to obtain a basis for the
IHP of degree n, compute all the products of an arbitrary
number of elements of the integrity basis at the exception of
those containing a power of x?, and (iii) apply the operator H
{to be defined below) on each of the products. The result is a
basis for the IHP of degree n. The following subsections de-
scribe each of these steps.

A. The Molien function and the associated integrity
basis

Let P be a vector field over R ™:
P:R">R’

the group O(n) acts naturally on R . Let G be a finite sub-
group of O(n) and I, the representation of G which is the
restriction of O(n) to G. The polynomial P (x) is said to be a
I, -tensor (I', is an irreducible representation of G ) if the
following condition is verified:

P, (g)x) =T (g7 ")P(x) VgeG. (1)

If I, is simply the identity representation, the condition (1) is
the usual invariance condition

AT, (g)x) = P(x) VgeG (2)

and the I, -tensors are called the invariants.
The Molien function answers the following question:

how many independent I'; -tensors of degree / are there? This

information (for all n) is casted in the Taylor expansion of the

Molien function (also called *“‘generating function”):

B(N.IA)= 3 ad' o)
i=0
The coefficient a, is the number of I',-tensors of degree /. If
the representation I, is irreducible [like the natural repre-

senation of the cubic group as a subgroup of O(3)], the func-
tion B (I",,,I,;A ) is given by
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N.yv*
B[, [ A)=—— D ¢
IG ] conjugacy det(l — ﬂAs)

classes

) 4)

where |G | is the number of elements of G, N, the number of
elements in the conjugacy classes s, y* the complex conju-
gate of the character of the class s in the representation I,
and A the matrix representing one element of the class s in
the representation I',, . {The technique of the Molien function
is explained in greater details in Burnside.?!) If the represen-
tation is reducible (I', =TI, @', @--&I, ), the generat-
ing function is the product of the generating functions for the
irreducible parts:

BT, T4 )= B(I,, 1,4 )BT A ~BIT, T,:A). (5)

The information contained in the form (3) seems to be the
totality of what B (I",,,I",;A ) can tell us. However, the result
of the explicit computation of (4} can be put in the more
informative form

B(T,,Iid)=SkA?/T[(1—29, 6
( ) p; /,,I;[Q( ) (6)

where &, p, and q take positive integer values and P and Q
are finite sets. The number of monomials in the denominator
is equal to n, the dimension of I,,. An integrity basis for the
I, -tensors are a finite number of I, -tensors which, joined to
a finite number of invariants can span the whole set of I, -
tensors by products and linear combination. It is not hard to
see that such an integrity basis can be formed by &, I',-
tensors of degree p (for all peP) and 7 invariants whose de-
grees are the elements of Q. Among those invariants there
will always be the x> = x? + xJ + - + xZ invariant for the
subgroups of O(n). (x; are the coordinates on R *.)

With the knowledge of what is contained in the integri-
ty basis, one can take the most general homogeneous vector
fields and solve the I, -variance condition (1) for a complete
set of generators of G. Thus, one has the elements of the
integrity basis explicitly.

What should be kept in mind of this subsection is that
there exists a finite number of I, -tensors and invariants
which span all I, -tensors and that these elements of the in-
tegrity basis can be found by the technique of the Molien
function. (An example of the results of this technique is given
for the cubic group in Sec. 3).

B. A generating function for the IHP

The Molien function gives the number of homogeneous
polynomial invariants (or I, -tensors) for a given degree. But
this is not exactly what we are looking for. Indeed, we re-
quire the invariants to be harmonic, i.e., to verify the
equations

AI =0, (7)
where 4 is the Laplace operator
& &> >
A = —+— + vee . 8
axi  ax2 Ox?2 ®

A natural question arises then: Is there an analog of the
Molien function for the IHP? The answer to this question is
yes; but first, let us recall some basic facts about harmonic
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polynomials. (For an exhaustive treatment, see Vilenkin.?)

Let ™ be the space of homogeneous polynomials of
degree /on R ". One can define an action of O(#) on the space
of functions on R " by

L(g)f(x)=f(g"'x) VgeOln). (%)
Under this action, the space ™' is invariant: indeed, if f(x)
eR™, flg~'x) is also in ™. The representation L ™, the re-
striction of L to R™'is, however, reducible. To convince one-
self of that, one can observe that x*R™ ~? is an invariant
subspace on R™ [due to the fact that x? is invariant under
O(n)]. Since O(n) is compact, the representation L *'is com-
pletely reducible.

Another important invariant subspace of R™is precise-
ly the subspace of harmonic polynomials that will be denot-
ed "' Its invariance follows from the observations that the
operator commutes with the action of L ™. [Note that
(f{g™ 'x)) can be easily computed with the change of varia-
bles x’ = g~ 'x. Under this change of variables, A becomes

2 2 2
4a=9 ;9 .9
ox;2 Ox5? ox;?
and A(f(g~ 'x)) = 0.]

The relationship between ™ and its two invariant sub-
spaces x*R™' ~ 2 and $™' is contained in the following lemma
(demonstrated in Vilenkin):

Lemma: The space R™ is the direct sum of the (supple-
mentary) subspaces #R™' ~ % and H™"

mn,l — ’.2%71.1-— 2 ) @n.l‘ (1 1)

Moreover, $™' is irreducible under the action of L ™.

As we have pointed out in the preceding subsection, all
the generating functions B (I",,I",;A ) contain in their de-
nominator the monomial (1 — A %) corresponding to the in-
variant x°. Among the invariants {or I',-tensors) of degree /
constructed with the elements of the integrity basis, those
which contain a power of x” lie in the #”R™'~ 2 subspace of
™. The others are not necessarily in $™ but have at least a
component in this subspace.

Lemma: The generating function for the THP is

Buyp (T, )= (1 = A%B(,. A (12)

(The analogous result for the invariants has also been ob-
tained by Meyer.'?)

Proof: Restricted to the finite subgroup G, the represen-
tation L ™' decomposes in irreducible representations:

L™ =al eale~ea'Tl,, (13)

where m is the number of irreducible representations of G.
The a! are the coefficients of the Molien functions:

(10)

B(I,.IA)=3 ad' (14)
I=0
Since $™' is an irreducible subspace of L ™' the restriction of
L ™'to this subspace can also be written as a direct sum of the
irreducible representations /;:

L™ =bilebileebll,. (15)
The coefficients b | are precisely the numbers we are looking
for; indeed, the generating functions By (I7,,],;4 ) for the
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THP will be written
Bup(F LA )= bid’ (16)
I=0

By the discussion preceding the lemma, we know that

bi<al —adi_,. (17)
Introduce now the generating functions for the dimensions
of L™ and ™"

LA)= 3 A'dimL™ (18a)
I=0

and

hid)=3 A'dim§™ = S A'dimL™| . (18]
i=0 1=0

Using the decomposition (11), 4, (4 ) can be rewritten as
hyid)= 3 A'(dim L™ — dim L™ ~?) (19)
I=0
which can be expressed in terms of the a} by (13):
h,,(xl):li il,lf(a"—a;;z)dimn. (20)
=0i=

(It is to be understood that a} = O for / < 0.) In the same way,
(15) gives
hd)=3S S A'bjdimT, (21)
I=0i=1

which finally gives a relation between the @} and the b :

Y (@ —aj_;)dimI; =¥ bidim T, (22)

i=1 i=1
Subject to the inequalities (17), the & have to be given by
bi=a,—ad_,. (23)
The generating functions B, are then

0

Bip(l T 3A) = 2(0‘1 —a;_, 1!

1=0
= SaA =223 a Al

1;01 1;()1 z
=(1—-A%B(I,.I;A). (24)

C. The harmonic projector H

Since $™ and %™~ 2 are supplementary there exists a
projector on ™. This harmonic projector H ™ acting on a
given vector of R™ gives a vector of the subspace $™". It takes
the following differential operator form (see again Vilenkin):

U2 (— 1) (n + 21 — 2k — 4t Ak
“o 2%k l(n + 21 — 4 '
Since the restriction of L ™' of O(n) to the subgroup G com-
mutes with 4 [for example, for a given I',-tensor, we have

AP, (g)x) = AL, (g~ "\\Px)=T,(g” P (x)],  (26)
H preserves the I',-variance of the objects on which it acts.
Then if H acts on a basis (constructed with the elements of
the integrity basis) for the I, -tensors of degree /, it will pro-
ject to 0 all the elements containing a factor x** and give
linear independent harmonic I, -tensors out of the others.

H"'l —

(25)
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We have then proven the validity of our algorithm for ob-
taining a basis for the invariant (or I',-tensor) harmonic
polynomials of degree /:
-(i) Obtain the Molien function and the corresponding

integrity basis;

(ii) calculate a basis for the subspace of degree / and omit
in this list the elements containing a power of x’; and

(iii) apply H to these elements.

3. AN EXAMPLE: THE IHP FOR THE CUBIC SUBGROUP
OF O(3)

This example should make clear the steps described in
the preceding section. The first consists in computing the
Molien function for the invariants. Putting I'; = I', (identity
representation) in (4}, one obtains easily (see, for example,
Patera, Sharp, and Winternitz'?)

B([,,FpA)=(1+A°/(1-A%1—4%1-249.(27)
The corresponding integrity basis is calculated by introduc-
ing the most general polynomial of degree 2, 4, 6, and 9
successively in (2). We choose the following elements:

L=x*+y"+2%

Li=x*+y*+2%,

I, = x5 +y° + 25

E, = xyz{x* — y*) y* — 2°)(2* — X7). (28)
The second step produces the basis of the subspace for a
given /. Let us take / = 12 for this example. The generating
function (27) tells us that there are seven invariants of degree
12:

B(r,,[WA)=14+A%4+221*4+31°+44% 4+ 1°

+S5SA AN L IA T 4 29)
A basis for this seven dimensional subspace is
I8, 131, I131;, I3, I3I, I,J, and I%. (30)
We know that the subspace ,, = 9, ,, of dimension 25 is
spanned by the polynomials 7'?Y 7. The restriction of the
25-dimensional irreducible representation of O(3} to the ele-
ments of the cubic subgroup G decomposes on the irreduci-

ble representations of G as follows (the superscript in paren-
thesis gives the dimensionality of the representation):

I lcose =2 Ve 1N o2l Ye3rPeiry), (31)
the representation I, being the identity representation. The
subspace 9, ,, of harmonic polynomials contains then two

invariants. A quick look at (30) tells us that there are precise-

ly two invariants not containing I,: they are /3 and 7 2. A last
verification can be obtained by calculating By :

Byl A ) =(1 _'{Z)B(Fn’rl;ﬂ')
=14+A* 444484 4%° 4470
+247% 4 (32)
which also gives 2 as coefficient of A 2.
The third and last step consists in projecting 7} and 2
on §; , by the use of H*'2 The operator H>'? is
& (=132

H*1?2 —
o 24k 1(23)1

(33)
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and the basis of invariant harmonic polynomials of degree 12 is found to be
HS,IZ(I:) — a{ 101 [xIZ _+_y12 +zl2] _ 3333[x10(y2 +ZZ) +y10(x2 +ZZ) +Z]0(x2 +y2)]
+ 23550{x®%(y* + z*) + p5(x* + 2%) + 28(x* 4 y*)] + 8685x%222[x® + y° + 28] — 42609 [x°2® + y°2° + 2°x°]
— 20265 [x%( y*2 + y72%) + yOx*2? + x%2%) + 2%(x%p? + xHY)] + 101325x%%2%},
H3,12(Ig) — b {24(x12 +y12 + 212) . 792[x10( y2 + 22) +y10(x2 + 22) + zl()(xz _+_y2)]
+ BIS[x(p* +2%) + 3 x* + 2%) + 28x* + p*)] + 30750x222[x° + p° + 2°] + 3262[x%° + y°z° + 2°x°]
+ T1750[x%( y*2* + y72*) + yo(x*2* + x%2%) + 2°(x*p® 4 x**)] + 358750x%y*z*], (34)

where a and b are constants.

One can see on this example that the algorithm can be
easily programmed with a language manipulating algebraic
expressions. This has been done on a DEC 2050 using a
REDUCE compilator. Given the expressions H for n =3 (I
free) and of the Laplacian acting on a general product of the
elements of the integrity basis (28),

AISISISE?
=al4a—4416b+24c +36d + 63 'ISISES

+16b(b— WIS~ 'Ed

+c(24b + 30c + 484 )51+ EY

+ b(64c +40d + 1)+ IS 'ICES

+¢(—48b+30c — 30— 1248+ 151'EY

—30clc— W38+ s 2Ed

+ Bbel§ I T T ES + 6clc — WIS ISTE 2EE,

(35)

the program generates for each / the invariants subject to the
conditions of the step (ii) of the algorithm, applies H on each
of them (expressed as a product of elements of the integrity
basis), transforms the solutions in Cartesian coordinates and
lists the results. We have run the program up to / = 25 but
we did not push further since we did not want to publish any
tables. Another version of the program for the pseudoinvar-
iants (transforming under the alternate representation) has
also been devised and run for /<25. The common denomina-
tor of the polynomials is factored out; the coefficients are
then integer and there is no loss of accuracy.

4. CONCLUSION

To close this paper, we would like to stress some of the
advantages of the algorithm.

The algorithm is easy enough to program that anyone
who is familiar with the usual programming languages can
obtain harmonic polynomials of “‘reasonable” degrees with-
out any sophisticated numerical methods. The program can
be set up in such a way that the coefficients of the IHP are
integer and therefore exact. The algorithm clearly works in
any dimension n and for any finite subgroups GC O(n).
Moreover, it is obvious from Sec. 2 how to compute I, -
tensor harmonic polynomials for any irreducible representa-
tion I, of G. Finally, one important advantage lies in the fact
that the invariance (or I',-variance) conditions (2) [or (1)] are
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solved once and for all (at the step of calculating the integrity
basis). This avoids the solution of any high-dimensional sys-
tem of linear equations.
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A Galerkin method and nonlinear oscillations and waves
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A Galerkin method is developed as a generalization of the variational averaging method to deal
with problems with dissipation. Some nonlinear oscillations, nonlinear waves, and nonlinear
stability problems are studied to illustrate the application of the new method. It is demonstrated
that when the dissipative parameter is small, the solutions agree with those obtained by other

established methods.
PACS numbers: 02.30. + g

{. INTRODUCTION

For a wide class of problems on nonlinear oscillations,
nonlinear waves, and nonlinear stabilities, variational meth-
od has been shown to be a useful tool to obtain approximate
asymptotic solutions.'™ The method starts with reformulat-
ing the problem by an equivalent variational problem; then
some appropriately chosen asymptotic trial solutions with
adjustable parameters are substituted into the functional to
be varied. It is expected that the system of equations govern-
ing the adjustable unknown parameters would be simpler
than the original problem. An essential step in the variation-
al method is to find the functional to be varied. For many
important physical problems, e.g., almost all the problems
with dissipation, the functional or the Lagrangian cannot be
found, and the variational method is not applicable. This is a
serious defect of the method. Some attempts have been made
to modify the variational method to accommodate the prob-
lems with dissipation."” In this study we shall develop the
method in a more systematic manner.

The method to be developed is a generalization of the
Galerkin method. The essence of the Galerkin method may
be described as follows.® Take the differential equation

Lx(z]]=0. (1)
A trial solution is taken in the form
N
x=Y cxft) (2)

i=1
where {x;(¢)} is a set of given functions. Then choose a set of
weighting functions {w;(¢)}. The parameters {c,} are to be
determined by the following set of algebraic equations:

f(L ;::1 c,-x,-D-wjdt =0, j=1,.,N (3)

The weighting functions {w;(z)} were originally chosen by

Galerkin’ to be identical to {x,(¢)}. Then it may be shown

when {x,(¢)} form a complete orthogonal set, the solution (2)
represents the exact solution, if N is taken to be large enough.
However, as an approximate method in practice, N is usually
not large and {x;(¢)} often does not form a complete set. The
weighting functions {w;(t)} are also often chosen to be dif-
ferent from {x,(t)} as dictated mostly by experience or con-

*On leave from Wuhan Institute of Hydraulic and Electric Engineering,
Wuhan, People’s Republic of China.
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venience. The flexibility of the choices of {w;(¢)} has its mer-
its. But the lack of definiteness is also disturbing when the
method is to be applied in an area where one has little
experience.

The classical Galerkin method is closely related to the
direct variational method. Take Eq. (1); it is often possible to
establish an equivalent variational formulation:

AJ =0, (4)

where the functional J {x] is of the form

J= f F(x"(¢),....x(¢),0)dt. (5)
After some manipulation, we obtain from (4)

fL [x(z)}4xdt = 0. (6)

Thus Eq. (1) is the Euler-Lagrange equation of the variation-
al problem. When the direct method is employed with the
trial solution (2), then

N
Ax =Y x,t)dc,. (7
i=1
Because of the independent variations of Ac;, we obtain from
(6)

f(L [ ﬁv: c,-xi])xjdtz 0, j=1,.,N (8)

i=1

Equation (8) is the same as (3) when {w,(¢)] are identi-
fied with {x;(¢)}. Thus, when the problem can be formulated
in terms of a variational principle, a definite Galerkin meth-
od as exemplified by Eq. (8) can always be found, which is
equivalent to the variational method. However, there are
many problems for which it is impossible or very difficult to
find the functional J and to formulate the problem in terms
of a variational principle. For these problems, the variational
method is not applicable without modification. On the other
hand, for the Galerkin method, it is apparent that instead of
(6), we may also formulate the problem in terms of the more
general relation

f L [x(t)14f (x)dt = O, o)

wheref'(x)is any arbitrary function of x. The proper choice of
S would certainly affect the outcome of the analysis. In the
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following, we shall examine these questions and present a
scheme of the generalized Galerkin method. Then this Ga-
lerkin method will be applied to some nonlinear oscillation
and nonlinear stability problems for illustration.

ll. GENERAL SCHEME OF THE GALERKIN METHOD

Consider a differential equation schematically repre-
sented by

L[x(t);a] =0. (10)

where a is a parameter. As examples, take the following
differential equations representing oscillations with linear
and nonlinear dampings:

x" +2ax' +x=0 A (1
and

x" +axP+x=0. (12)

We shall be interested in those equations, as in the
above examples for which an equivalent variational formula-
tion exists if the parameter «a is zero. More explicitly, when

a = Qafunctional J can be found and AJ = O will lead to the
following relation:

JL [x(£);0]4x dt = 0. (13)
Then for a sufficiently small, we expect a similar relation
jL [x(t)a]Ax dt =0 (14)

is also valid. This is the essence of the general scheme of the
proposed Galerkin method. It is an exact formulation when
a = 0, and it is free from the ambiguity as manifested by (9).
It is capable of dealing with dissipative systems, such as (11)
and (12), if the dissipation is sufficiently small. Indeed, the
method may also be called the variational Galerkin method.

As in the general application of the direct variational
method, the trial solution need not be of the form (2). We
may take instead

x(t) = ¢ (6¢1-Cn); (15)

where ¢, are those adjustable parameters to be varied inde-
pendently. Then the Galerkin formulation becomes

JL [¢;] —aidtzo, i=1,..,N. (16)
de,

To treat problems with asymptotic periodic solutions,
such as a certain class of nonlinear oscillations, waves, and
stability problems, we shall again follow the same averaging
scheme as developed in previous studies.'~ In essence, we
shall make use of whatever prior information there is as
much as possible and incorporating it into the form of the
trial solution. Then, approximate equations for the adjusta-
ble parameters, e.g., amplitudes, phases, etc., are obtained
and solved by singling out the secular terms.

Although we have used an ordinary differential equa-
tion of a single variable (1) to present the general scheme of
the variational Galerkin method, the same procedure can be
readily applied to partial differential equations and equa-
tions with many variables. The generalization to the prob-
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lems with more than one dissipative parameter can also be
made in the same manner.

lll. LINEAR AND NONLINEAR OSCILLATIONS WITH
DAMPING

Consider the differential equation of oscillation with
linear damping (11). When a = 0, the variational formula-
tion will lead to the following relation:

AT =0,
where
J= f L — x2)de.
o 2
Or, equivalently,
f (x" +x)dxdt=0. (17)
(1]

Thus, according to the general scheme presented in Sec. II,
the corresponding Galerkin formulation of Eq. (11) is

j (x" 4 2ax’ + x)Ax dt = 0. (18)
(0]

Take the trial solution of the form
x=A{(t)sin B(z), (19)

where 4 (t )and B '(t ) are taken to be slowly varying functions
of time. Thus

x' = A'sin B + AB'cosB, (20)
x"=A"sinB+2A4'B'cos B
+ AB "cos B — AB *sin B, (21)
and
Ax = sin BAA + Acos BAB. (22)

Substituting these expressions into (18), we obtain
1
J ([(4" —AB"™ +2a4’' + A)sin’B
0

4+ (24'B'+ AB" + 2aAB’)sin B cos BAA
+[(24'B' +AB" + 2aAB')cos’B

4+ (4" —AB"” 4 2aA’ + A)sin B cos BAAB }dt
=0. (23)

Using the averaging scheme as developed in the vari-
ational method' by retaining only the secular terms, and not-
ing that A4 and AB are independent, we obtain

A" —AB"”? 4204’ +A4=0 (24)
and

24'B' +AB" + 2aAB' =0. (25)
Since 4 and B ‘ are slowly varying functions of time, we shall
neglect the terms with 4 ” and B " in (24) and (25). Further-

more, & is also a small parameter. Thus we may approximate
(24) and (25) by

AB?—A4=0 (26)

and
(A'+ad)B'=0. 27
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Hence we obtain

B=t+§ (28)
and
A=ae (29)

where a and B are integration constants.
Thus the solution (19) becomes

x =ae” *Sin(t + B). (30)
The exact solution of the differential equation (11) is readily
found to be
x =ae " “sin[(1 — a2+ 8]
=ae” “sin(t + B) + O (a?). (31)
Therefore the approximate solution (30) obtained by the Ga-
lerkin method agrees with the exact solution at least up to

O (a). In fact, for this linear problem, the system (24) and (25)
also has the exact solutions

Alt)y=ae *
and
Bit)=(1—a®)"%+pB.

Let us now apply the Galerkin method to the problem
of oscillation with cubic damping (12). Then the correspond-
ing Galerkin formulation is

Jq [x" + a(x')® + x]Ax dt=0. (32)

Take again the trial solution {19), and apply the same averag-
ing scheme as before, we obtain

A"—AB'2+A+%“—(A'3+A2A'B'2)=0 (33)

and

?_A’B’+AB”+%(A3B’3+AA'ZB’)=O. (34)
The approximate equations are then

B?2—14=0 (35)
and

u'3'+%A3B'3=0. (36)
Thus we obtain from (35)

B=t+£ (37)
and

1
(38)

T la+ Basa]?’

where £ and a are integration constants. Thus the approxi-
mate solution of (12) is

___ sin{t+ B)
T la+ (Bas4y]V?’ (39)

The approximate solution (39) is the same as that obtained by
the method of multiple scale.®
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IV. DUFFING STABILITY WITH DAMPING

Consider the Duffing equation with damping,

u" +au —au+yu*=0, (40)
where a, a, and y are real positive constants. When a = 0,
the equation represents a system which is linearly unstable
and nonlinearly stable, and has been studied by the vari-
ational method.? Multiply (40) with «’ and then integrate; we
obtain

(G -ru-ef (e @
where
F(u)= C + au® — (y/2ju* (42)

and C is an integration constant to be determined by initial
conditions. For instance: u(t,) = 0, u'(t,) = v/C. When
a = 0, Eq. (41) may be integrated to yield solutions in terms
of elliptic functions. When « is small, it is expected that u(t )
will still exhibit a largely periodic behavior in some definite
finite interval of time. From Eq. (41), it is clear that solutions
are permitted only if the right-hand side of (41) is positive. It
is convenient for our discussion to adjust the constant Cin
(42) as C (t,) such that (z — t,) never exceeds the period of the
system at the time. Then C is monotonously decreasing in ¢,
The function F (u) for various C’s are shown in Fig. 1. When
C> 0 [Fig. 1(a)], the system is largely oscillating between
+ u,. As t increases, C will decrease and eventually C be-

comes negative [Fig. 1(c})]. Then the system will oscillate
between u, and u, (or — u; and — u,). Eventually u will
settle down asymptotically to u, = (a/7)"/? [or — (a/¥)"/?],
as shown in Fig. 1(d).

Now we apply the Galerkin method to Eq. (40) and
obtain

f u” +au' —au + yu’)du dt = 0. (43)
(V]

Let us take the trial function
u(t)=A(t)sinv(t)+ B(t), {44)

where A4, B, and v’ are slowly varying functions of time.
Thus, for instance,

u'(t)=A'sinv+ Av'cosv+ B’

and
Au =sinvAA + A cos vAv + AB.

After using the same averaging scheme as before, we obtain
A" +ad’ —A[vV) +a—(y43+3yBY} =0, (45)

24V + Av" +adv' =0, (46)
and

B"+aB'—aB+yB® +3yA*B=0. (47)
The approximate equations are then

(V)P =3y4*+3yB*—a, (48)

A’ +(a/2)4 =0, {49)
and

B[Bz—(a/y——gAz)] =0. (50)
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Flu)
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-y, -uz\\‘/uz U, 4
{c) (d)

FIG. 1. The schematic representation of F(u). (a): C>0; (b) C=0; (¢c) C<0; (d) C= — a*/2y.

From (49) we obtain
A(t) = A(tyle (@A -1, (51)

Thus the amplitude of the oscillation will diminish slowly
but exponentially with time. Since 4 and B are slowly vary-
ing functions of time, we may treat them as constants in any
definite small interval of time. Hence (48) can be integrated
approximately to yield

v=owt+ ¢, (52)
where
w?*=3yA*+3yB’—a (53)

and w is the frequency of the oscillation.
From (51) we obtain either

(i) B=0 (54)
or
(i) B= +(a/y —34%)"% (35)
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The case B = 0 corresponds to the situation depicted in Fig.
1(a). Since 4 is decreasing in ¢, while »” cannot be negative,
the solution ceases to be valid when #—0 or when

A 2—4a/3y. Then the mode (i) will switch over to the mode
(ii) given by (55), corresponding to the situation depicted in
Fig. 1 (c). Since 4 is again diminishing, eventually for large ¢,
we obtain asymptotically

A=0, B= +(a/7)"?%

which is the state depicted in Fig. 1(d).

There is no exact analytical solution for Egs. (40) or (41).
The approximate solution attained above by the Galerkin
method catches the essential features of the solution except
at the transition region, as depicted in Fig. 1{b). We shall
briefly sketch how to deal with this transition problem. With
C considered as a slowly decreasing function of z;,, we may
approximate (41), since a is a small parameter, by

(%‘:_)2 — Flu) (56)
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and
dr=2_ (57)
JF (u)
Substituting (56} and (57) into the integral in (41), we obtain
du\? _ *
(?) =Fu)—~a f JVF (u) du. (58)

In the transition region we may take C = 0, and thus
Flu) = au® — -’2’- u, (59)

Substitute (59) into (58}, then u(z ) can be explicitly integrated
in terms of quadrature in the transition region.

V. THE KLEIN~GORDON EQUATION WITH DAMPING

Let us now turn to partial differential equations and
consider the Klein-Gordon equation with damping:

Uy — Uxx + au, +f(ll) =0. (60)

When a = 0, this equation has been investigated by the vari-
ational method by Whitham* and Hsieh.2 The latter ap-
proach can be readily adapted to the Galerkin method, and
we shall follow that approach to deal with the case when
a#0.

The Galerkin formulation of (60) is

13 0
f dtf dx[u, —u., +au, +f(u)]du=0. (6])
0 —
Let us take the trial solution of the following form:

u=A (x2S (x,t)), (62)

where 4, S,, and S, are all slowly varying functions of {x,t)
and ¢ is a periodic function of S which satisfies the following
conditions:

¢S +2m) =¢(S), (63)
=_l_ 2” =

)= ["gas=o0, (64

3 =1 (65)
It follows from (63) that

(#4") = ($'6") =0, (66)
and we shall denote

(7= —(g8") =8. (67)
From (62) we have

u, =A,¢4+A4S.¢’, (68)

U, = An¢ + 2AxS1¢ "+ ASn¢ “+ AS3¢ " (69)
and a similar set for #, and u_, . Also we have

Au=¢AA + Ad'4AS. (70)

Substituting these expressions in (61) and carrying out the
averaging scheme as before, we obtain

A, —A, +A4, —PAS?—Si)+g4)=0 (71)
and

ad’S, +(4°S,), — (47S,), =0, (72)
1045 J. Math. Phys., Vol. 24, No. 5, May 1983

where

gld) = (¢f(44)). (73)
Since A is supposed to be a slowly varying function of {x,¢)
and a is a small parameter, we obtain the approximate
equations

BA(S}—S})—gl4)=0 (74)
and

adS, +8S,(4?), -8 (43, =0. (75)

Let us denote

S, =-0, S =k (76)

When o and k are slowly varying functions of (x,? ), and can
be treated as if they are constants, then Eq. (74) represents
the nonlinear dispersion relation

P =k?+ % . (1
Equation (75) becomes
A,+%Ax+%A=O, (78)

which has the general solution
Axt)=e “Va{x — (k /o)t ], (79)

where a is any arbitrary function. Since, from (77) the group
velocity C, is given by

do k
C,=—=—, 80
¢ dk o (80
{79) can also be written as
Ax,t)=e"“Pa(x — C,t). (81)

Thus the amplitude function is propagating with the group
velocity and also decays exponentially with damping coeffi-
cient a/2.

If f(u) is a polynomial of u, i.e.,

Sl = 3 Cout )
then
gi4)= 3 C. (674" 3

In order to determine Band (¢ "), or generally g(4 ), we need
to know the periodic function ¢ (s). Using the original equa-
tion (60) as a guide, we may obtain ¢ (s) in the following man-
ner. Let u = ¢ {s)and s(x,t ) = kx — wt. Then treat k and w as
constants, and neglect the term with «a since a is a small
parameter. Then Eq. (60) becomes

vi¢" +fl)=0, (84)
where

V=0 —kZ
Equation (84) may be integrated to yield

s_ (9

v f (53 flz)dz} ' %)

The constants b and v can be determined from the conditions
(63)and (65). With ¢ (s) given, thenfand g(4 ) can be explicitly
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calculated, and the systems {74} and {75) can be solved. We
shall now consider in more detail the linear case, i.e., when
Sluy=u.

For the linear case, we obtain from (85), (63), and (64)
that

¢ (s) = V2 sinfs + ¥), (86)
where ¢ is a constant. From (73) and (67) we have

B=1 gAd)=A.
Thus (74) becomes

S2_8§2=1. (87)
A complete integral of the above equation is

S=kx—(14+ k3"t +m, (88)
where k and m are two arbitrary constants. Substituting (88)
into (75), we obtain
_k
(14 k212
which yields the general solution

¢

A+ %A =0, (89)

Axit)=e~ “”2”a<x — k ) . (90)

(1 + k 2)1/2 t
Thus

— p—la/2) _ k )
uxt)=e a(x ——-(1 +k2)”2t

X sinfkx — (1 + k32t + o), (91)
which represents the travelling solution for the linear Klein—
Gordon equation. It may be pointed out that when the linear
Klein—Gordon equation is solved by the method of Fourier
transform, the general solution can be written as

u(x,t ) — fdk a(k )e( —as2)t + i[kx — (1 + k2 — a*/4)''% ]‘ (92)

For travelling waves with wavenumbers in the neighbor-
hood of some definite k, the solutions (91) and (92) agree up
to the order O (a).

Equation (87) possesses also a singular solution which is
the envelope of the family of solutions represented by (88).
This singular solution is

S=(t?r— x2)l/2‘ (93)
Substituting (93) into (72), we obtain

(4%, + x4, + (1 +ar)d*=0. (94)
The general solution of (94} is of the form

A=e "t "2 (x/t), (95)

where b is an arbitrary function. The solution (95) is again
consistent with the asymptotic expression for large ¢ from
the solution (92) up to order O (a).
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VL. DISCUSSION

The examples of nonlinear oscillations and waves dis-
cussed in previous sections demonstrate that the variational
Galerkin method can successfully treat problems with dissi-
pation. When comparisons can be made, it is found that the
solutions obtained by the Galerkin method agree with those
obtained by other established methods so long as the dissipa-
tive parameter is small. It may be remembered, in contrast to
many other asymptotic methods, that the variational meth-
odis not intrinsically a perturbation method and therefore is
well adapted to treat a certain class of nonlinear stability
problems.> However, one major defect of the variational
method is its inability to deal with dissipative systems. The
proposed Galerkin method, as demonstrated by the exam-
ples treated in previous sections, apparently can remedy this
defect.

In the scheme of the Galerkin method, we have consi-
dered only the cases when the dissipative parameter « is
small. An obvious question is how far the small & solutions
can be extrapolated to the cases when « is not small. Thisis a
very important question that needs to be investigated. A re-
lated problem is a more rigorous establishment of the vari-
ational Galerkin method even when « is sufficiently small.

For problems with many adjustable parameters, it is
conceivable that there may be more than one possible vari-
ational formulation from which to generalize Galerkin
schemes. This problem of nonuniqueness is closely related to
the question of extrapolation just mentioned, and is different
from the nonuniqueness arising from the choices of different

f(x)in Eq. (9). For practical applications, however, it may yet
be worthwhile to investigate how sensitively the solutions
would depend on various choices of f(x) in (9).

It is clear that much work is still needed to answer the
many questions raised by the proposed variational Galerkin
method and to explore its wide-ranging potentials. In subse-
quent papers, we shall apply the method to various problems
in mechanics and physics, and among others some stability
problems in fluid dynamics.
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We develop the theory of R-separation for the Helmholtz equation on a pseudo-Riemannian
manifold (including the possibility of null coordinates) and show that it, and not ordinary variable
separation, is the natural analogy of additive separation for the Hamilton-Jacobi equation. We
provide a coordinate-free characterization of variable separation in terms of commuting

symmetry operators.

PACS numbers: 02.30. + g, 02.40.Ky

1. INTRODUCTION

Let ¥, be a (local) pseudo-Riemannian manifold. The
Helmholtz equation for ¥, is expressed in local coordinates

{ ¥/} by
AyY(y) = Efy) (1.1)

where E is a nonzero constant and 4 is the Hamiltonian or
Laplace-Beltrami operator’
1 & .
4 =_g—1/_2ij2=13i(g1/2gyaj)' (1.2)
Here, d; = d ;, the metric on ¥, is ds’ =3, g,dy'dy’,
g = det(g;)#0, and 2, g*g,; = 8. The Helmholtz equation
is closely associated with the Hamilton-Jacobi equation*

H{0, W)= 2 g%, Wi, W =E, (1.3)
=1
where H is the Hamiltonian function

H(p)= z g'p:p;- (1.4
Lj=1
Both 4 and H are defined independent of local coordinates.
In Ref. 3 the authors presented a theory of orthogonal
R-separation for (1.1). [By R-separation we mean separation
up to a fixed factor:

Hy) =R (y) ][ #70". (1.5)

j=1

Ordinary separation corresponds to R =1 and trivial R-se-
paration to d; In R = 0 for i#j.] We found necessary and
sufficient conditions that an additively separable orthogonal
coordinate system for the Hamilton—Jacobi equation will
also R-separate the Helmholtz equation. [An R-separable
system for (1.1) always separates (1.3).] Further, we found a
coordinate-free characterization of orthogonal R-separable
coordinate systems in terms of families of commuting sym-
metry operators for 4.

In this paper we extend the ideas of Ref. 3 to provide a
general theory of R-separation for the Helmholtz equation,
encompassing both orthogonal and nonorthogonal coordi-
nate systems. A major new complication is the possibility of
type 2 (null) coordinates. Our principal result is Theorem 3,

* Supported in part by NSF Grant MCS 78-26216.
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which provides an intrinsic characterization of an R-separa-
ble coordinate system in terms of a family of commuting
symmetry operators. (In particular, given the operators, ex-
pressed in an arbitrary coordinate system, one can compute
the R-separable coordinates.)

Although R-separation has long been a useful tool in
the study of the Laplace equation [E = 0 in (1.1)], its rel-
evance to the Helmholtz equation was, until recently, virtu-
ally ignored. Our results show clearly that R-separation,
rather than ordinary separation, for the Helmholtz equation
is the proper analog to additive separation of the Hamilton—
Jacobi equation. In fact, the problem of extending a separa-
ble system for (1.3) to an R-separable system for (1.1) reduces
to an exercise in quantization theory.

In Sec. 2 we give a precise operational definition of R-
separation for the Helmholtz equation. (We expect, though
we have not tried to verify, that any coordinate system which
R-separates in accordance with some more intuitive defini-
tion of separability can be shown to be equivalent to one of
our canonical systems.) In Theorem 1 we derive necessary
and sufficient conditions that a Hamilton-Jacobi separable
system be R-separable for the Helmholtz equation, and we
look at the special case of ordinary separation (R = 1}, ob-
taining a new generalization of the Robertson condition for
orthogonal separability. In Sec. 3 we develop the symmetry
operator approach to R-separation and review the corre-
sponding Hamilton-Jacobi theory. Section 4 contains our
main result, Theorem 3, which gives the intrinsic symmetry
operator characterization of R-separation. Finally, in Sec. 5
we provide some examples of R-separation and briefly dis-
cuss the significance of our results.

The theory presented here is local rather than global.
All functions are assumed to be locally analytic.

2. TECHNICAL CONSIDERATIONS

Let {x/} be a local coordinate system on the pseudo-
Riemannian manifold. We present here an operational de-
finition of R-separation for the Helmholtz equation

1 "
o7 d,(g'"? 8%, = Ey (2.1)

AyYy=

in the coordinates {x’} and derive necessary and sufficient
conditions for the existence of this phenomenon. Let (S;(x’)
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be a Stackel matrix, i.e.,an N X N nonsingular matrix whose
ith row depends only on the variable x and set § = det(S;).
We divide the coordinates x/ into three disjoint classes: es-
sential of type 1, essential of type 2, and ignorable. We further
order the indices so that n, coordinates x°, 1<a<n,, are es-
sential of type 1, the n, coordinates x’, n, + 1<r<n, + n,,
are essential of type 2, and the 7, coordinates x“,

n; + n, + 1<a<n, + n, + n, = n, areignorable. (In the fol-
lowing, unless otherwise stated, indices a, b, ¢ range from 1
to n,, indices 7, 5, t range from n; + 1ton, + n,, indicesa, 3,
y range from n, + n, + 1ton, and indices i, j, k range from 1
to n.) The ignorable coordinates are defined to be all x' such
that d,g/* (x) = O for all j, k. Finally, set N = n, + n,, let
A, = —E, A,,...,Ay be complex parameters, and define dif-
ferential operators X K, by

K, =3, + (x99, + m,(x) + ¥ A 2x)d 4
a.B

+ 3, + S ASube) 2.2

fora = 1,...,n, and
K, =23 BIxW0,, +m,(x) + T4 (),
a aB

N
+ 2nx0, + 3 A8 ,(x) (2.3)
a i=1
forr=n,+ 1,..,N.
We say that the coordinates {x’} are R-separable for
the Helmholtz equation (2.1) provided there exist functions

g (x) and R (x°,x") (R #0) such that

N
R AR —E= Y 8i(x)K,. (2.4)
k=1

Here

R'TAR =4 +g%9,InRJ; + R "4R) (2.5)
as an operator, where

. 1 y
A4 =g%9, +—73.(8"" g"9;. (2.6)
8

If the coordinates are R-separable then the function
x) = R ([l lesp| x| 2

is a solution of A1) = E1 whenever the y'/ satisfy separation
equations

K, [#9expd x*)} =0, a=1,.,n,
K, [¢exp(A,x%)] =0, r=n,+ L,.,N. (2.8)

Here the A, are arbitrary complex constantsand 4 ,,...,4,, are
the separation parameters. Note that the function exp(4,x?)
can be factored out of expressions (2.8), thus reducing these
expressions to ordinary differential equations. The type /
coordinates x* have the property that the corresponding se-
paration equations are second order ODE’s, whereas for type
2 coordinates x” the separation equations are first order
ODE’s. The solutions y{x,A) (2.7), depend on the separation
parameters A, but R (x®,x%) is independent of these
parameters.
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It follows from (2.2)2.4) that a necessary condition for
R-separation is

gu(x)=S8*/S, k=1,.,N (2.9)
where S “' is the (k,1) minor of (S;).

Thus the metric must take the form

al
gab=5ab_S§_’ garzgaa_:O’ grs=0’
Srl
e — Bo(x) 2, 2.10
g (x7) S (2.10)
8 1 N 5 vsil
=— APPX)—, a
g 5 ,-;1 (x) 3 #B
N <S”
a __ A?"’x' 2
g ,-; (x) S
Note that
n, n; n
5% 0 0\ n
gh=| o 0 g°| n,. (2.11)

0 g~ &*] ny
Conditions (2.10) are necessary but not sufficient for R-
separation. Before determining the remaining conditions,
however, it is worthwhile to point out the significance of
these restrictions on the metric. Consider the Hamilton-Ja-
cobi equation associated with the Helmholtz equation (2.1}

'3, Wd,W =E. (2.12)
It has recently been established,*~” that conditions (2.10) are

necessary and sufficient for (additive) separation of the Ham-
ilton—-Jacobi equation in the coordinates {x/}

W(x) =S WHx A)+ Y W A) + SAx* (2.13)

Indeed, Benenti’ has shown that every system which sepa-
rates (2.12), according to the intuitive definition of Levi-Ci-
vita,? is equivalent to a system in the canonical form (2.10).
Proposition 1: A coordinate system that is R-separable
for the Helmholtz equation is also separable for the Hamil-
ton—Jacobi equation. Let
Hor=3

, i=1,.,N. (2.14)

If conditions (2.10) hold then S £0 since g#£0. We can as-
sociate with our coordinate system {x/} on ¥, an orthogonal
coordinate system {x',....x" ] on a space ¥V with metric
N
ds’ = > H Xdx').
i=1
By (2.14), this metric is in Stiickel form.? Recall that neces-
sary and sufficient conditions that ds® be expressible in the
form (2.14) for some Stiickel matrix are (Ref. 1, Appendix 13)
dunH >+ dInH 9 nH?
—-dInH %9 InH*
—OnH 3InH;*=0,
j#k; ijk=1,.,N. (2.16)
We further recall some useful results from Ref. 6. Given a
metric ds® = 3, H*dx')* in Stickel form, we say that the

(2.15)
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function Q (x) is a Stdckel multiplier for (ds?) if the metric
ds? = Qds* is also in Stickel form with respect to the coordi-
nates {x’}. It can be shown that Q is a Stickel multiplier if
and only if there exist functions ¥, = ;(x/) such that

N
j —2
Q(x)= z Ylx)H 7
i=1
Equivalent necessary and sufficient conditions are

3,Q— 0,03 InH >~ 3,00InH *=0, j#k
(2.18)

(2.17)

We can now reformulate conditions (2.10).
Proposition 2: A necessary requirement for R-separa-
tion of (2.1) in the coordinates {x"i = 1,...,n} is that

g=H % g*=Bx)H > (2.19)

and that each g°° be a Stiickel multiplier for the Stickel form
metric ds* = 3¥_ | H3(dx*)2. All other matrix elements g”
must vanish.

To obtain sufficient conditions for R-separation we
must also demand equality of the coefficients of J; and the
zeroth order terms on each side of (2.5):

fo +23,In R =1,(x%, (2.20)
SEUu +20mR)= ¥ Himgle),  (21)
’ k=1
RY4R)= ﬁv" H [ ’m,(x*). (2.22)
k=1

Here,
f. =4, f f=Inig"%/s), (2.23)
fra =38,Ing"? g™) =f, + 3,In B(x").

Solving for R from (2.19) we find
R= (g)mexp[;/ta(x“) 40 (xS)], (2.24)

and substituting (2.23) into {2.20) and (2.21) we ultimately
obtain the following result.

Theorem 1: Necessary and sufficient conditions that the
coordinates {x’} be R-separable for the Helmholtz equation

L a,g" g',4) = By
g

are

(1) The requirements of Proposition 2 are satisfied, i.e., the
coordinates {x/} are separable for the Hamilton-Jacobi
equation g%9, Wo, W = E,

(2) Z,23,Q is a Stickel multiplier for each a,

(3) 2, H [ ¥ f.. +1/7%)is a Stickel multiplier, where

f, =3,In(g"?/S) and S is the determinant of the Stiickel
matrix.

If these conditions are satisfied then

R = (- ) exp| .t + 0001

where the 4, = A4,(x°) are arbitrary.

We say that the coordinates {x’} are separable for the
Helmbholtz equation provided they are R-separable with
R =1. Furthermore, R-separable coordinates are trivially R-

1049 J. Math. Phys., Vol. 24, No. 5, May 1983

separable if R = I17_ | R,(x') and (since coordinates are triv-
ially R-separable if and only if they are separable) we regard
trivial R-separation as equivalent to ordinary separation.

Especially interesting is the case of ordinary separation.
Then R =1 and expression (2.23] becomes

gl/ 2 .
tin( £ = S, + 010
Corollary 1 (Generalized Robertson Condition): Neces-
sary and sufficient conditions that the coordinates {x’} be
separable for the Helmholtz equation are
(1) the coordinates are separable for the Hamilton~Jacobi
equation,
(2)f, =0forj=1,..,N,j#a,
(3) 2,8 f, is a Stackel multiplier for each a.
Here f= In(g"/?/S) and f, = 3, f.
The original Robertson condition® was concerned with
the case of orthogonal separation. (By permitting a type 1
coordinate to be ignorable if necessary, we can identify this
case with n, = n, n, = n; = 0.) Robertson showed that an
orthogonal separable system for the Hamilton—Jacobi equa-
tion separated the Helmholtz equation if and only if f,, =0
for a#b. (Since n, = O this agrees with Corollary 1.)
Eisenhart? showed that the Robertson condition is
equivalent to the requirement

R, =0, a#b (2.26)

where R, is the Ricci tensor expressed in terms of the ortho-
gonal coordinates {x*}. (For an explicit definition of the
Ricci tensor R; in terms of the metric g together with relat-
ed computational formulas we refer the reader to Chap. 1 of
Eisenhart’s text.!) Benenti'® studied nonorthogonal separa-
tion for the Helmholtz equation in which no nonignorable
null coordinates were allowed (n, = 0 in our formalism). His
requirement for Helmholtz separation agrees with our con-
dition (2). Benenti further showed that his requirement was
equivalent to (2.20) again and that R ,, = 0 automatically for
Hamilton-Jacobi separable systems. By a tedious but
straightforward computation we have established

Lemma 1. Condition (2) of Corollary 1, namely

f =0 for j=1.,N, j#a
is equivalent to
R, =0, a#b, R, =0, (2.27)

where R, is the Ricci tensor for ¥, expressed in the coordi-
nates {x/}. Furthermore, R, = 0 automatically if {x/} sep-
arates the Hamilton-Jacobi equation.

It is perhaps somewhat surprising that requirements
(2.25) continue to hold even with the presence of type 2 co-
ordinates. Condition (3) of Corollary 1 appears not to be
expressible in terms of the Riemann curvature tensor and its
covariant derivatives. However, this condition is vacuous for
n,< 1. Since g” = 0, type 2 coordinates are null and any two
such coordinates are orthogonal. Thus, for separation on a
proper Riemannian space ¥, we must have n, = 0 and for a
pseudo-Riemannian V, with signature ( — 1,17~ '} we must
have n,<1.

Corollary 2: In order that Hamilton-Jacobi separable
coordinates {x’} separate the Helmholtz equation on a pseu-

(2.25)
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do-Riemannian manifold with signature (1”)or( — 1,17~ Y)it
is necessary and sufficient that

R, =0, a#b, R, =0.

3. CONSTANTS OF THE MOTION

Let us suppose that the coordinates {x/} R-separate the
Helmbholtz equation. Then expanding the corresponding
Stéckel matrix in (2.2}, (2.3) by the / th, rather than just the
Ist, column we obtain operators <7, / = 1,...,N, such that
1 = — A,y for an R-separated solution ¢

S al
A= 5 (O 10, + SA0 + i,

a

+m. +10. e — L1 +Af2 - 12])

rl

+ 2 5 (223 %0 + %4 *08 .5

+3(n? —2B% InR)3, + m,). (3.1)

(Note that o/, = A.) These expressions are not as complicat-
ed as they appear. It can be directly verified (and we will
show this later) that

(&, d ] =0, [LaLs]=0,

[#,-L,] =0, 1<Lk<N (3.2)
where

ZL,=4d,, a=N+1,.,n, (3.3)

and [, B = o B — # . Thus the operators &,
(2<k<N), £, form a commuting family of symmetry oper-
ators for 4, i.e., they commute with 4 and with each other.
Furthermore, the R-separated solutions of (2.2) are simulta-
neous eigenfunctions of the symmetry operators:

A W= -4y, L. =21, (3.4)

Our construction has started with an R-separable coor-
dinate system {x'} and produced a commuting family of
symmetry operators { &,,.% , }. It is our principal task in
this paper to characterize those families of commuting sym-
metry operators that correspond to R-separation.

In Ref. 6 the authors solved the corresponding problem
for the Hamilton-Jacobi equation (2.12). In that case we uti-
lized the natural symplectic structure on the cotangent bun-
dle ¥, of ¥,. Corresponding to local coordinates {x'} on V,
we have coordinates {x', p,} on the 2n-dimensional space
V. The Poisson bracket of two functions F (x’, p,), G (x/, p;)
on ¥, is defined by

{(F.G}=Y 3,F3,G—3,F3,G)
I=1

Let {x'} be a separable coordinate system for the Hamilton—
Jacobi equation (2.12) with coordinates of type 1, x°, of type
2, x", and ignorable, x°, as usual. Then the metric g¥ in these
coordinates takes the standard form (2.10).

It is convenient at this point to introduce the functions
o) (x',...,.x"), where

Sk _, 87 -

S =AU S =H

S

(3.5)

1</,k<N, (3.6)
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and S;; is the Stackel matrix corresponding to the separable

system {x'}. Then p/" = 1 and it can be shown that (Ref. I,
Appendix 13)

3pl) = () — p*N3In H 72, 1<i, jk,<N. (3.7)

Let H =X, ;g'p,p; be the Hamiltonian corresponding to
(2.12). In Ref. 6 we constructed quadratic forms 4, (4, = H),
given by

A =SplH Z(p: +34 ::ﬂpapﬂ)
a ap

+ S (3B R+ SAP0s) 08
for /= 1,...,,N and n, linear forms L,
L,=p,, a=N+1,.,n 3.9)
These polynomials in the p’s were shown to satisfy
{4, 4,1 =0, {L,,Lg} =0, (3.10)
{4,L,} =0, Lk=1,.,N,

and when evaluated forp, =3, W,p, =3, W,p, =3, W
with W a separable solution of (2.12), they satisfy

AI = _/ll’ La =/{a’
where A, = — E,...,A, are the separation parameters.
Let a%(y) be a symmetric contravariant 2-tensor on V,,,
expressed in terms of local coordinates {y*}, and let g¥(y) be

the contravariant metric tensor. A root p(y) of a? is a solution
of the characteristic equation

det(a’ — pg¥) =0 (3.12)

and an eigenform @ = 2A,dy* corresponding to p is a non-
zero 1-form such that

(3.11)

n

> (@' —pgh; =0, i=1,..n.

j=1
Roots and eigenforms are definéd independent of local
coordinates.

Note from (3.8) that for a separable system {y}] the p!!’
are simple roots of the 4, with simultaneous eigenforms dx*,
and the p!'' are roots of multiplicity 2 but with a single eigen-
form dx". Here dx°,dx" are also eigenforms for the products
L,Lg.

Let {y/} be a local coordinate system on a pseudo-Rie-
mannian manifold and let @, = 4, ;dy’, 1<j<n, be a local
basis of 1-forms on ¥,. The dual basis of vector fields is X *)

= A™3,, 1<h<n, where A4, , = 8. The inner pro-
duct of two 1-forms o 5,@, 18 G {j.,k ) = A, ,8"A )
In Ref. 6 we proved

(3.13)

Theorem 2: Let 8 be a vector subspace of quadratic
forms on ¥V, such that He@ and

(1) {4,B } = O for each 4,Beb,

(2) there is a basis of 1-forms w;, = 4, ;,dy’, 1<j<n, such that
(i) the , forms w,, are simultaneous eigenforms for
each Ae@ with root p2,
(ii) the n, forms w,, are simultaneous eigenforms for
each A€@ with root p; the root p; has multiplicity 2 but
corresponds to only one simultaneous eigenform,
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(3) {L,,Lg} =0and L,Ly€6, where L, = A"“p,,
aB=n+n+1..n,
(4) {4,L,} = 0 for each Ae6,

(5) X Ay s5)) = p, X" 11 8As) )

(6) dim@ = §(2n + n,> — n;), where ny =n — n, — n,,
(7 Gla,b)=0if a#b, and G (a,r) = G (a,a) = G (r,5) = 0.

Then there exist local coordinates {x’} for ¥, and functions
S Y(x) such that @, = f dx’ (with a suitable modification
of the ) and the Hamilton—Jacobi equation is separable in
these coordinates. Conversely, to every separable coordinate
system {x/} for the Hamilton-Jacobi equation there corre-
sponds a subspace 8 of quadratic forms on ¥V, with proper-
ties (1)~(7).

In the following section we will show that, with suitable
modifications, this result also characterizes R-separable sys-
tems for the Helmholtz equation.

4. THE BASIC RESULT

Let A be the Hamiltonian operator (1.2), expressed in
terms of local coordinates {x’}. Suppose &7 is a second order
symmetry operator for 4, i.e., a differential operator such
that [.#,4 ] = 0 and which in local coordinates can be writ-
ten

oA = aij(Y)a.‘j +b v)a, + cy) 9= ayf (4.1)

where @’ = ¢" and not all & vanish. As shown in Ref. 3 we
can decompose & uniquely in the form

oL =5+, (4.2)
where
1 "
y = g1/2 ai(gl/z auaj) + ¢,
L =b49, (4.3)
[FA4]l=[ZA]=0. (4.4)

Furthermore, this decomposition is coordinate independent.
Decomposing the operators 7, (3.1), in this form we find

d( = Y] + “?l’
1 .
& =?_av,.(g”2 ai\3))

1/2
+ EJ(GI'HG_ z(ma + %aa [f;z - Ia]
2 -2+ 3pVH [ m,, (4.5)

~ N
2=\ SplH ne

i=1
~ SPUH B0 BT +6,0))a

for/ = 1,...,N, where

4, = a(’i;Pin (4.6)
is the quadratic form (3.8). Note that Z ; is not only a sym-
metry operator for 4, but it in addition is functionally depen-

dent on the first order symmetries ., (3.3). That is, there
exist functions gf(x) such that

1051 J. Math. Phys., Vol. 24, No. 5, May 1983

Z,=3gxL,. (4.7)

Returning to the general symmetry operator <, {(4.1)-
(4.4), we can uniquely associate this operator with the qua-
dratic form 4 on V,, defined in local coordinates by

A= Za"p,-pj. (4.8)
Lj

We can talk about the roots and eigenforms of &/, meaning
by this the roots and eigenforms of 4. The following analogy
of Theorem 2 holds.

Theorem 3: Let { &, = 4, & ,,...,o ] be a set of sec-
ond order symmetry operators for 4 with {4, } linearly inde-
pendent, and let { Ly, |,...,.-ZL, } (1 — N = n;) be alinearly
independent set of first order symmetry operators such that
M [ ]=0,[H,-L.]=0,[F,,-Lp] =0,

(2) each .Z, is functignally dependent on the set {.Z, },
where o7, = %, + .£, is the canonical decomposition
(4.1)~(4.4) of &7,

(3) no &7, belongs to the associative algebra generated by
(L.}, e, o, cannot be expressed as ¢f*.¥ ,.% , for con-
stants ¢,

(4) there is a basis of 1-forms w ;, = 4, ;dy’, 1<j<n, such that
(ny+n,=N)

(i) the n, forms w,,, are simultaneous eigenforms for
each 4, with root p!!),

(ii) the n, forms w,,, are simultaneous eigenforms for
each 4, with double root p!"’; the root corresponds to only
one eigenform,

(iii) &, = A3,

(5) X i@y Ass)) = 7 X A iy 85 )
(6)Gla,b)=0ifa##b, and G (a,r) = G (a,a) = G (r,s) = 0.
Then there exist local coordinates {x’} for ¥, and functions
SY(x) such that w , = f ’dx’ (with a suitable modification
of the w,,) and the Helmholtz equation (2.1) is R-separable
in these coordinates. Conversely, to every R-separable coor-
dinate system {x’} for the Helmholtz equation there corre-
spond operators <« ;,.Z , on ¥, with properties (1}-(6).

Proof: Suppose conditions {1)—(6) are satisfied. Compar-
ing coefficients of the highest order (nonvanishing) deriva-
tive terms in condition (1} we find

(44} =0, [4,L,} =0, {L,,Ls} =0,
where L, = A“p,. It follows from this and conditions (3)-
(6) that the hypotheses of Theorem 2 are satisfied. Indeed the
subspace @ is that with basis {4,,L,Lza<f }. Hence, there
exists a local coordinate system {x/} such that the functions
A;,L, canbe expressed in the form (3.8). If 4, = a] \p;p; then
by condition (2) and the fact that det(p}')#0 we can write
o =5 +.L,, where

1 i N _

L= Fai(gllz a(l)aj) + kZIP(IZ’Hk zgk’ (4.9)
~ N
2= 3 ppH 7w,

K=

and

N N
ZH[2§k=O, 2H,:2§’“’=0, (4.10)
K=1 K=1
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since &/, = A4 and p}' = 1.

We have not yet fully utilized condition (1). Since &, is
self adjoint and .%,,.% , are skew adjoint,” the first two
equations in condition (1) yield

[Z.,Z.]1=0 (4.11a)
[Z,%:]1=0, (4.11b)
[£F ] =0, (4.11c)
[L0 L] + [ 205 e] =0. (4.11d)

Equation (4.11a) yields d, & ¥’ = 0 and (4.11b) is satisfied
identically. Equating coefficients of d; on both sides of
(4.11¢) we find d,.f, = d.f,, 3.f, = 3./, a result already
known. Equating coefficients of d; on both sides of (4.11c)
and using det(p{')#0 we find

3E"=0, 3,26° —fou —¥2)=0,
as(zga_.faa _%fg)zo,
B70,6°=BJ9,£", r#s

Since the last equality must hold for all @, we have d,£ "= 0
for r#s. Thus

£9=4[ fua + V2 +2P.(xY],
§'="P,x)

and from (4.10) we see that
SH . faa +3f2)

is a Stdckel multiplier. Thus condition {3) [and condition (1)]
of Theorem 1 are satisfied. [The zeroth order terms in (4.11c)
give no new requirements.]

The only constraints remaining to us are (4.11d). Equat-
ing coefficients of d,,, in this expression we find

3, =0, 8,£°=0, b#a.
Equating coefficients of d,; we find

B%3,£° + B79,£ =0,

B3, £+ B?9,EF =BP3.£™ + B2J.EP, r#s.
Thus

a#b,

(no sum).

(4.12)

£ =THx"), &£°=VIKx9), (4.13)
where
B?3.T® + B3, T =B%3.T*
+B23.T? r+#s, nosum. (4.14)

To solve relations (4.14) for T'¢ we use the fact that the

n, X ny matrix (B 4(x")) has rank n,. The ignorable coordi-
nates {x®] are not unique. A new set of ignorable coordi-
nates {x"#}, where x"# = C£x® and (C%) is a nonsingular
constant matrix, will do as well. One effect of such a choice of
new ignorable coordinates is to provide a new matrix

(B "#x")) constructible from the original matrix by a sequence
of elementary column transformations. Conversely, elemen-
tary column transformations of {B #) induce transformations
of ignorable coordinates. Assuming n,>2 [since otherwise
(4.14) is vacuous] we can always choose a new set of ignora-
ble coordinates {x"?} such that every matrix element B '?
and every 2 X 2 minor in the new matrix are nonvanishing in
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a suitably small x'-coordinate neighborhood. Assuming this
done and dropping the primes we set @ = fin (4.14) to obtain

9,(T?/B?) =4,(T?/B?), r#s. (4.15)

Substituting this result back into (4.14) and simplifying we
obtain

(Grwraar ) 0(52)-o(52)) -0 e
pepeaige )\"\g<) " \5z)) =% H1

1t follows from (4.16) that
T?=Bix)Z, + PJ(x’)

and from (4.15) that 3,Z, = 3, Z,, r+#s.

Thus there exists a function @ (x*) (depending on type 2 var-

iables only) such that Z, = — 2. Q.
We conclude that

§™= —2B73,Qx)+ PIx), 5§ =Vi(x°). (418

Substituting this result into (4.10) we see that 3, ¢°3,Q is a
Stackel multiplier. Thus all conditions of Theorem 1 are sat-
isfied and the coordinates {x'} (hence the coordinates {x})
R-separate the Helmholtz equation. [We note that the first
derivative terms in (4.11d) yield no new restrictions.]
Conversely, if the coordinates {x/} R-separate the

Helmholtz equation we can reverse the order of the above
argument and verify conditions (1)-{6). Q.E.D.

(4.17)

5. DISCUSSION AND EXAMPLES

Theorem 2 states that a Hamilton—Jacobi separable sys-
tem {x’} is R-separable for the Helmholtz equation if and
only if the involutive family of Killing tensors 4,,L, corre-
sponds to a commutative family of symmetry operators
o ,.L .. The technical conditions {2} and (3) of Theorem 1
are necessary and sufficient that such a correspondence ex-
ists. In this sense our results have a close relationship with
quantization theory.

Note that if the operators .«7,,.% , satisfy the hypoth-
eses of Theorem 3, except for requirement (2), then the oper-
ators % ,,.% , define an R-separation of the Helmholtz
equation.

Our generalization of variable separation for the Helm-
holtz equation to R-separation and including null coordi-
nates would be of little value unless nontrivial R-separation
exists. In fact, all of the phenomena discussed in this paper
do occur. For examples of ordinary separation involving
type 2 (null) coordinates see Refs. 4, 5, and 11. For examples
{and a theory} of nontrivial orthogonal R-separation see
Refs. 3 and 12. Here, we merely recall one example of non-
orthogonal R-separation from Ref. 12 to show how it relates
to the general theory. The example is a ¥, with local coordi-
nates (x,....x*)=(x,y,a,8 ) and metric

0 0 & 1
o e 1

gy — i 5.1

E1=lo o 0 o0 -0
1 1 0 0

Thus, n, = n; = 2, n = 4. The coordinates are easily
checked to be Hamilton-Jacobi separable and /=

E. G. Kalnins and W. Miller, Jr. 1052



Ing'/?/S) = ~ In(¢’ — €). Since n, = 0, condition (3) of
Theorem 1 is satisfied. We first check ordinary separability.
Here H >=H *=1andg™f, + g%, = — & — ¢,
&%, + &%, = — 1s0 2,¢"f, is always a Stiickel multi-
plier. It follows that the Helmholtz equation separates in the
coordinates {x/]. We have shown that Q = f'satisfies condi-
tion (2) in Theorem 1. However, once we have separation we
can achieve further R-separation by choosing Q to be any
other function satisfying condition {2). In particular choose
@ = 0. Then the Helmholtz equation R-separates in the co-
ordinates {x/] with R = (¢ — €*)"/% (The phenomenon of
multiple R-separation for a single coordinate system is possi-
ble only if type 2 coordinates are present.) In Ref. 12 we give
the operator characterizations of these coordinates in accor-
dance with Theorem 3.

Upon comparison of Theorem 2 and 3 it is clear that R-
separation and not just ordinary separation is the appropri-
ate Helmholtz analogy of separation for the Hamilton-Ja-
cobi equation.
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We derive closed expressions for some infinite series of products of Legendre functions and
gamma functions. A particular series has been used to obtain the partial-wave projected quantum
mechanical Coulomb transition matrix in closed analytic form for all partial waves, / =0, 1,---.
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1. INTRODUCTION

In this paper we shall derive closed expressions for some
infinite series involving products of Legendre functions and
products of gamma functions. We have used one of these
series to obtain a closed hypergeometric-function expression
for the partial-wave projections, for all /, of the Coulomb
transition matrix in nonrelativistic quantum mechanics.'
The need for such a closed expression for the Coulomb T’
matrices has been the principal motivation for this
investigation.

In Sec. 2 we shall state and prove three theorems.
Theorem 1 just paves the way for the proof of Theorem 3,
which constitutes the main result of this paper. In Sec. 3 we
shall briefly consider some interesting particular cases.

2. THREE INFINITE SERIES

Theorem 1: Let aeC\ Z, SR, ¢eR, AC, A 'eC. Let
either

)B8=0, |p|l<m,
or
(ii) 8 #0, |B|+ |p/m|<1, Reld +4')> —1,
or
(i) B #0, 18]+ |¢/7| <1, Reld +4%> — 1.
Then
© (___ l)n ein¢z

2

ntmwa—n I'A+1—nB)A'+1+4nB)

me'*fcsec o

= . 1
FA+1—aB)L A"+ 1+apB) M
Proof: We define the function £(C\Z)\ {a}—C by
fla)y = e T csec ma 2)

a—a F'A+1—aB)FTA'+1+aB)

Then fis a meromorphic function having simple poles in a
and in all elements of Z. Let C, (n = 1, 2,---) be the circles with
center O and radius # + € such that the poles of fare avoided.
By showing that

lim | |f(a)|da =0, (3)

n—oo

we derive

2 (residues of f) = 0,
which proves Eq. (1).

Let us first consider case (i) # = 0. In this case Eq. (3)
reduces to
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1 ee®

a—a sinar

lim da=0

n—wJC,

(—7m<p<m),

which is easily verified.

In the cases (ii) and (iii) we may assume without real loss
of generality that B> 0. In order to obtain the asymptotic
behavior of f(a), we rewrite Eq. (2) by using the equality

FA+1—aB)\af—A)=mcsecm(aB—A).

Then
fla) = % sinmaB—A) T'@B—A)
a—a sin 7a r'a+1'+1)
_ €% sinmaB+A") I'(—aB—1")
a—a sin 7ra I(—aB+A+1)

If|argaB | <m — €le>0), T (@B — A)/T" (6B + A’ + 1)isrep-
resented asymptotically by (@) 24~ If
larg(—aB) <7 — €, (—aB —A')/T(—aB+ A+ 1)is e-
represented asymptotically by (—aff) =4 —* — L

When 8 + |@/m| = 1, we have

|e“¢ sin 7@ — A )/sin ma| = O(l)on C,,
n— . Hence (3) holdsif Re (4 +A4' + 1)>0.

When S8 + |@/7| < 1 one easily verifies that

lim e“? sinmaf—A) da=0
n—eojc | a —a sin 7a ’
so that (3) holds if Re (A + 4" + 1)>0.
Theorem 2: Let aeC\Z,
BeR, A, AeC (i=1,2,.m)
Let either

SIBI<L S Reld, +4;+1)50,

i=1 i=1

or

i 1B:| <1, i Re(d;, + 4!+ 1)>0.

i=1 i=1
Then
& (=1 A 1
,,=§;m a—n =1 FA,+1—nB) (A +1+4+nB,)
m 1
s T, +1—aB)C (A +1+aB;)

= 17 CSCC T

Proof: The proof is similar to that of Theorem 1. We
define
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“ 1
sl +1—aB)C (A +1+aB8)’
and we are going to prove Eq. (3). Without real loss of gener-
ality we may assume that 8, %0 (i = 1, 2,...,m). Werearrange
the 8's so that

0<B;<l, j=12,..nm
—1<B, <0, k=n+1,.,m.
Then we can rewrite f as follows:

T CseC Ta

fla): =

a-—a

fla) = rla — @) {sin 7a)~*
X‘ﬁ 7~ 'sin m(aB; — ;)
W TlaB, — ) [ (aB, + 4] + 1]~
x il 7 sinT( — B —Af)

X (—aBy —AL)[T(—aBi +Ac + 1)] 7"

From this expression it can be seen that if |arga| <7 — €
(e > 0), f(a) is represented asymptotically by

fla)~7' ~"(a —a)” (sin ma)™!
X [[sin maB; — A,;)sin7( —aBi —A %)
gk
X(@B) ™" T (—ap) T

IfZlB,.|EZBj — ZBk = 1, we have
7 7 X

|csec ma[] sin maB; — A;)sinw( —af, — A ;)|
sk
= 0(1),
If z B, — z‘/)’k < 1, it follows that
7 %

aeC,, s, N—>o0.

. csec a
lim _

n—w JC,

sin (@B, — A;
S ] st 4
Xsinw(—af, —A;); =0
Hence

lim | |flg)|da=0
Ca

n— oo

if either

SIBiI<1, FRe(4, +4;+1)>0

or
2IB:1<1, YRe(4; +4[+1)>0.
Definition: Let u, v, 2eC. We define
1
Bz = —————F(—v, 1 +v;1 — ;) — 12), 4
P2 F(l—y)zl( v it —12) (4)

where the function of the right-hand side is understood to be
the analytic continuation with respect to 4 in the positive
integers. Then p(z) is, for fixed v and z, an entire analytic
function of y(cf. Refs. 2-4).

When v is an integer, p%(z) is a polynomial in z. When
veC\Z, p’(z) has a branch cut: ze( — «, — 1].
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Theorem 3: Let aeC\Z; BeR; A, A", v, v, 2, Z'€C.

If
{iyRez>0,
(i) Rez' >0,
and
(iii) either

—1<B<1l, Reld +4")> —1,
or

—1<f<l,
then

Re(d +4')> —1;

0

> (= la—n)~'pf M) p ()

= 7 csec (ma)p}® ~H2) p, P (Z). (5)
When sin v = 0, condition (i) may be omitted. Similarly,
when sin 7' = 0, (ii) may be omitted.

Proof: We shall first prove the theorem under the addi-
tional conditions:

[1+2]<2, [1+2]<2.

These conditions can be dropped afterwards by means of
analytic continuation. Indeed, in the Appendix we shall
prove that the series in Theorem 3 is uniformly convergent
when Rez>0,Rez’' > 0.

When sin 7v = 0 or sin mv' = 0 the proof is just a sim-
ple special case of the general proof of the theorem.

In analogy with the proof of Theorem 1 we define

fla): = ma — a) " 'csec map® ~Hz)p s P~ *(2)).
Then we have to prove that Eq. (3} holds. With this aim we
are going to derive a suitable asymptotic estimate of f{a) for
|a|— . We shall assume that 8> 0, which means no real
loss of generality.

It is well known that

lim,_, , .Fia,bcz) =1,

provided that |z| < 1 and |arg ¢| <7 — € (€ > 0). In view of
the definition of p* we have
fla) = mcsec (maja —a)~!
IF'A+1—aB)lA’'+1+aB)
XoF(—v,14+v;1—af+A4;1—1z)
XF( =V, 1+v;1+aB+A%)—12).
We rewrite the first hypergeometric function by using for-
mula (17) of Ref. 2, p. 141. Substituting
7/ A +1—aB)=T(af —A)sinm(af — 1),

we obtain

fla)=(a—a)7 ' F(—V,1 +vi1+aB+ 1"} — i)
I'af—A—v) I'aB+1—-1+v)
I'aB+A'+1) T@B+1-4)
sinmaf — 4 )

X—m——
sin 7a
XLFA(=v,14+v;aB+1—4;1 + )
sin v ( l—z)"ﬁ“
sinmaB—A)\ 142z

XzFl(‘V:1+V;aﬂ+1—/1;5—52)]-
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By observing that
1—z
1+:2

one easily obtains a suitable asymptotic representation of

<1, I+i]<l, §+iN<],

fla) for |a|]—> 0,
fla)~l@—a)~YaB) !

X[ sinmaf—A)  sinwv ( 1—2z )"B"*]

sin 7a sinma \ 1+z '

The expression in square brackets is bounded for a on the
circles C,, n— oo, provided |arg a|<m/2. Because of the
symmetry (A<>d ’; ze2'; a> — a; a«> — a), a similar fact
holds mutatis mutandis when |arg ( — a)|<w/2. It follows
that, for some M,

|fl@) <M |a—a|""a| =47, aeC,.
Clearly Eq. (3) holdsif Re (A +4'+ 1)>0.

When the second condition of (iii) holds, the proof of the
theorem follows by verifying that

larg a| <7 — €le > 0)

lim | |a—a]™!
n—+o00 C"

X da=0

sinmaf—A4)  sinmv ( 1_z)aﬁ—a

sin wa sinma \ 14z

when — 1<B<1.

This completes the proof of Theorem 3, except for the
restrictionsonzandz’: |1 + z| <2, |1 + Z'| <2. The series in
Theorem 3 is uniformly convergent with respect toz and 2’ if
Rez>0, Rez' > 0. Since its terms are analytic functions of z
and of Z', as is its sum, it follows by analytic continuation that
the aforementioned restrictions on z and z' can be removed.
The proof of the uniform convergence will be given in the
Appendix.

3. SOME SPECIAL CASES

In this section we shall consider some special cases of
Theorems 1 and 3.
By taking A = A’ = 0in Theorem 1 we obtain

2 (=1 sinmnf _ we® sinmaf
,,=Zw a—n nf " sin7a raf
where sin x/x is understood to be 1 when x = 0. Clearly,
when 8= + 1 Eq. (6} is valid for ¢ = O only, in conformity
with condition (ii) of the theorem.

. (6)

TakingA =4’ = — | we get (using
I'(§ +2)I'(} — z) = 7 sec m2)
o —_ 1" ia@
D (=1 e cos mnf3 = ?Te cosmaf, (7)
et @—n sin 7o

which holds for || + |@¢/7| < 1.
By taking, in Theorem 1, ¢ = 0 and a—{1 + 1)/B, we
obtain

) (=118 _
E . Tavz—mpra <158 "

provided that either — 1<A<1,Re{d +4')> —lor
—1<B<1,Re(d +4')> — 1. Note that the factor S in the
numerator is necessary for the case 8 = 0 only.
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Now we shall consider some particular cases of
Theorem 3. According to the definition of p% [Eq. (4)], we
have

Pol2) =z 4+ 1)"*2z — 11°P'(2),
where $% is Legendre’s function of the first kind. Hence,
Yoz Hz) = BB “2).
By substituting this into Eq. (5) withA =A4'=0andz =7,
we get
=1 oty o
a—n

= 7 csec (1B PP, “(z). (9a)
In the particular case v = v this can be rewritten as

o (—1)
$ L1 ooy

o at—n
= 7 csec (ma)BA2)B, “z), (9b)
which is a well-known relation, see, e.g., Refs. 5-8. Here ¢, is
definedby e, =1, €, =2 (n = 1,2,).
Finally we shall consider Eq. (5} (Theorem 3) in the par-

ticularcasewhend = A ' =0, = l,andv = v' = /eN. Then
we have

i_ (a_—li: pielo "(2) =  csec (ma)pfiz)p; “(2),

B (10a)
which holds for all complex z and z'. Since / is a nonnegative
integer, pj can be expressed in terms of the Jacobi polyno-
mial P}~ =<

pie) =Py~ > (1 + W/l —a+1).
The infinite sum in Eq. (10a) reduces to a finite sum. We get

S el A R TS
Etia—n (I —nll+na)

— T esec Ta
rl—a+1H)rg+a+1)

which holds for zeC, z'eC, aeC\ Z, [eN.

We have used Eq. (10b) to obtain a closed expression, in
terms of hypergeometric functions and elementary func-
tions, of the partial-wave projected Coulomb transition op-
erator in quantum mechanics.'

Finally, we note that T. J. Osler® has evaluated a num-
ber of sums similar to those in this paper.

P z)p (e~ ),

(10b)
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APPENDIX
In this appendix we shall prove that the series [cf. Eq.
(5)]

= 3 (= 1Pla— )P s )

n= — o

is uniformly convergent with respect to z and z’ for Rez > 0,
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Re z' >0, under the conditions of Theorem 3.
By Eq. (4) we have

P2 = [C(1 —p)] 7P (= w1+ vl —ph —b2).
We rewrite the right member by using,” p. 141, Eq. (17):

_ 'v+p+1)
al{u+1)

XTI (g — v} sin 7r,u[2F,( —v1+vl+pl+4iz)
_ sinmy ( l—z)“
sinu \ 142z

XaFi = w1+ %51+t~ 42| (A1)

v

We assume first that 0 <8< 1, and we consider the con-
vergence of S, where

o0 —1
S+ = 2 ee; S_ = ey S=S+ +S__

n=0 n= —

The discussion for the case — 1< <0 and for S_ is very
similar to the present one.

By using Eq. (A1) we have (we assume here z €[1, )

Se= 27T
X Fy =V, 1+ v51+nB+ A% — 1)
F'v+nB—A+O)rnB—v—2)
FimB+A"'+ 1) 'nB—A+1)
X [sin w(nB — A)
X Fil—v1+ vl 4+n8—A4+12)
| —z \—4
1+z)
X F{—v, 1 +v;1+nf -4 —12)].  (A2)
It is well known that for zeC\[1, o)
JFia b;c;z)=1+abc™ 'z + -,

17_-—1

— sin 7rv(

le[— 0,

is an asymptotic expansion provided Re ¢— «0 . By using this
expansion and

Fz+a)/Tiz+B)=22"?[1+0{7"),
|zl >, |argz|<m,
it follows from (A2) that we have to prove that

i(_ l)nn—2—).-/l'

n=1

X[sin w(nB —A)— sin 17'1/(

1—z )"ﬁ—*]
142

1057 J. Math. Phys., Vol. 24, No. 5, May 1983

is uniformly convergent with respect to z.

The first term in square brackets is z-independent. Ac-
cording to Theorem 1, the series of these terms is convergent,
and hence uniformly convergent with respect to z.

When sin 7v = 0, the second term vanishes for all z.
Suppose now sin 7v#0; we have to prove that

i(— 1)"n—z~a_1,(1__z_)nﬁ

n=1 1 +z
is uniformly convergent. From Re z> 0 we have
{1 —2)/(1 + z)| < 1. It follows that the sum is absolutely
convergent and hence uniformly convergent for all §
satisfying
1—2z
142
This completes the proof of the uniform convergence of S,
for B> 0. By interchangingzand z’, A and A ', and v and v' it
easily follows that .S_ is uniformly convergent for Re z' > 0.
Finally, the case 8 <0 is obtained by using the new variable
of summation m = — n.

<6< 1.
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A simple proof of a transformation formula for elliptic integrals
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A very simple proof of a quadratic transformation formula for elliptic integrals found by Carlson

in 1977 is given.

PACS numbers: 02.30. — f

Elliptic integrals which occur in many physical prob-
lems have been the subject of interesting investigations in the
last years. We refer, in particular, to some remarkable papers
of Carlson'~® concerning both the numerical evaluation of
the integrals and their transformation properties. In this
context, the formula®

fw dx[(x + @)x + b 2)x + A)x +d 3]~

= Jw dx{[x + (ab + cd )*}[x + (ac + bd )]
(1)

X [x + (ad + b))} 12,

fw dx{[x +(c+ab)*)[x + (b + ac)’][x + (@ + bc)*]} ~'/?
@ =1 -b? tz” — 2

1
= 2 fdt”l
a+bec o

_(az—bz)(l—cz)tz][l

which is a quadratic transformation from the quartic to the
cubic case, is of fundamental importance.

The purpose of the present paper is to give a short deri-
vation of Eq. (1) based on a trick which gives a very simple
answer to the problem, proposed by Carlson? and solved by
himself,? where Eq. (1) is obtained by a change of variable. At
the same time, the role played by the addition theorem
emerges in a clear way.

We can put, without loss of generality, d = 1 in Eq. (1).
Let’s first consider the right-hand side; by introducing the
new variable t = (a + bc)[x + (a + bc)?]~'/?, we readily ob-
tain

(@ + bc)? (@ + be)?
S Lp(1 113, @obiod) @-ciios) o
Ca+be 27272727 (@ + bc)? (@ + bc)? ’

where F is the first Appell’s hypergeometric series in two
variables.*

On the other hand, the left-hand side of Eq. (1), setting
t = [(x + @?)/(x + 1)]'/?, becomes

jw dxl(x + 1)x + @)ox + b x4+ ¢3] 172
0

b*—1
2_ 2

=2[(b2—a¥)(c? — az)]—”ZL1 dt [(1 -

2 —1 —1/72
“(1-S=Le) "

- a
Without loss of generality, we take 0 <a < 1 and
b, ¢ >a. Thecase b, ¢ >a > 1is easily reduced to the previous
one, performing the change of variable x = a’y.
Now we consider the problem of finding a function
T = 7(a) such that

f de [(1 —utH(1 — w312

a

)

(3)

)d'r[(l —ur?)(1 —ovr)] 2, (4)

(0]
« and v being arbitrary parameters; this just amounts to de-
termining a suitable change of variable.
Equation (4) can be rewritten as

1058 J. Math. Phys. 24 (5), May 1983
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I
Jadx[(l — ux?)(l —vx?)] V2

+ J-de[(l —ux?)(1 —vx?)] V2

1
= f dx[(1 — ux?)(1 —ovx?)] Y2,
0
Recalling that®
n(z,k )
z=f dx[(1 — x°)(1 — k2x*)] 7'/
0

and using the addition formula for the Jacobian elliptic func-
tion sn(z, k ), we have

_ 1 —cdu)t —a)]"? —a[(1 —u)1 —v)]"*

7la)

1 — d*uv
()
Since [cf. Eq. (2)] the right-hand side of Eq. (4) can be ex-
pressed in terms of the Appell’s function F}, we obtain
T@F(3, 4,4, 3; 7lau, Tap)
1
= f dr[(1 —ut)(1 —wvty)] 12, (6)
If we now choose
® 1983 American Institute of Physics 1058



b*—1
R
we immediately recognize that the right-hand sides of Egs.
(2) and (3) are equal and thus formula (1) is proved. We also
remark that some results existing in the literature are noth-
ing but particular cases of (4). As a specific example, we
quote the formula®

fi \ dx[(l ”lif;xz)(l _ 1+Tax2)] i

_cf—1

- ’
c2_a2

= [2(1 + a)]"K (a), (7)
K being the complete elliptic integral of the first kind. To
obtain (7) it suffices to takea = — 1, u = 2a/(1 + a), and

v = (1 + a)/2in (4); this way the left-hand side of (7) becomes
equal to (2/(1 + @))"/?K (2Ja/(1 + a)), and the desired re-
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sult follows at once by using a standard quadratic transfor-
mation of the hypergeometric function.”

We thank D. Zanon for a critical reading of the manu-
script.
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Expression for y,,, [(ri Ar2) Ars]

T. A. Antone
Department of Mathematics, Ahmadu Bello University, Zaria, Nigeria

{Received 27 May 1981; accepted for publication 3 December 1982)

The solid harmonic y; ,, [ (r; Ar,) Ar;] is expressed in terms of the spherical harmonics Y, .o, (F1),
Y, m,(F2), and Y, (f5). The calculation of the coefficients in the given expansion in terms of 9 — j
symbols explicitly justifies the form given by Eq. (1).

PACS numbers: 02.30.Gp, 03.65. — w

I. INTRODUCTION
We express the solid harmonic in the form
Yem B AT ATs] = Z A(Lyy Ly, Ly, Ly, L)Ly, My; Ly, My|L\L,L M )
L \L,L,,L,LM M,

XAL g M55 Ly, Mo|L\,La LM )Y o (B)Y o0, (£2) Y e, (R3) 1)

where the coefficients 4 (L,, L,, L,,, L,, L) are independent of the quantum numbers M, M,, M, as well as the angles in-
volved. We find that these coefficients are expressed in terms of the 9 — j symbols as

L] L2 LIZ
S (—1)K(s t,j, Ly, Ly, Ly, L){s t Ly}, (2)

2L12+1)V2
Hw L—j j L

AL, L, L, L, L)= _1L3(
(1 2 12 3 ) ( ) 2L+

where J, 5, and ¢ take the values
j=L,L—-1,L~-2,.0, s=jj—2j—4..,1o0r0, t=L—j,L—j—2L—j—4,.,10r0,

and

K(s,t,j,L,, L, Ly, L) = 477.(’.1’.2’.3)1,( (2L, + 1)2L, + 1)2L, + 1)}2L)! )1/2

(2M2L — 2))!
y QU2+ =L L 4 1)(2s + 1)(22 4 1)j YL —j)! (s L—j Ll)(t J Lz) (t s L3) o)
BU—sMBEL—j— N +s+ DL —j+e+110 0 0/0 0 0/% 0 0/
—

Il. CALCULATION OF THE COEFFICIENTS and Eq. (3.7.17) in the form
A(Lh L2v L12’ L3! L) k k Kl "k 21\ 172

The solid harmonic y,,(a + b) is expressed by Eq. (p —f ) =(—1)F —— ‘(( —2 ).('p )') .
(12.41) in Talman® in terms of the spherical harmonics 0 0 0 pik —p)! {2k + 1)t )
Y, @andY,_,, _,(b)as

We now write our solid harmonic of Eq. (1) as
Vg +b) = 3 (— 1} 92k + arb*=
P4 Ve [P AT AR] = pra[(ryr3)rs — (Fema)t ] = Z 4,

( 4m{2k ) )1/2
(2p + )2k — 2p + 1!

p k—p k . R
X (Q1 qg—q, — q)Y”"' @)Yy _pq—q, ),

(4) and use Eq. (4) to write it as

Zim= z (— 1)/ MQ2L + 1)|(ryr3)rs ] /[fesr)e, |57
jm

. 4m(2L ), 12
where in Edmonds® we have used Eq. (3.7.3) relating the X( 7+ 2L — 27 + 1)
Clebsch-Gordan coefficients to the 3 — j symbols in the &+ DL -+ 1)

form y ( j L—j L )

(s M3 Jamy| Gy Jadsms) m M—m -—M

J2 I3 ) (5) XYmB) YL _jm— miEr) - {7
m, —my But

— _1 jl—j2+m32. 11/2(jl
( ) 25+ 1) m,
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2(1/2)ls —Jy' |

|(r o)y |/ = (ry7ors) cOs? 8,3 = dar(ryryrs)’ Z

wheres =j,j — 2,j — 4,...,1 or 0 and |u|<s.
With a similar expression for |(r;r,)r, | ~/, we write Eq. (7) as

Y:: (fl)Ysu (f.B) ’

S BG—9N+s+ 1N

Zp = 16TQL + 1)rior)” 3 (= 1)/

Jjmstuy

( 4r2L )

2(1/2}(5 +t— L_)j '(L _J)‘

UL —— U +s+ )L — e+ 10
XY ENY st m )Y F) Vi B2V 2 )Y )

wheret=L —j, L —j—2,L —j—4,.1or0and |v|<t.
Using Eq. (4.6.5) in Edmonds? in the form

001 = 3 (— (Bt e U0 + 1))

Jamy 4o
h J2 js)(jl J2 J )Y. .
X(o 0 o/\m my —my) Tl
we write Eq. (8) as
Z,, = 3 (—1)f+“+"K(s,t,j,L,,Lz,La,L)( i

stuyimL L, L .M M,

X(t J Lz)( t s L3)(j L—j
v m —-M,)\—v u —My/\m M-m

XYy v, B Y e, (B2) Y, (B3)

172
(27 + 1)2L — 2j + 1) )

CRES
m M—m -—-M

(8)
9
L—j Ll)
M—-—m —M,
L
)
(10)

whereK (s, t,j, L,, L,, L,, L) is given by Eq. (3). Equation (10) shows that the coefficients of the spherical harmonics vanish
unlessu=M —m —M,,v=M, —mand the values (s + L —j+ L}, (t +j + L,), and (t + s + L;) are even integers.
Using a relation between the 3 — j and 9 — j symbols given by de-Shalit? in the form

( s L—j L,)(t J Lz)(t s L3)(j L—j L)
,g,, —u M-—-m -M/ v m -M/\v —u MJ\m M-—-m -M

_ Z (—l)L'+L2+L"(2L12+1)(1Lwl L, Lu)(}l‘;z L, L)
LM, 1 M, -M,, 2 M, -M
L, L, L,
X{s t Ly ¢, (11)
L—j j L
we write Eq. (10) as
Ziu= 3 (=)/rMerhrhrtiegL 4 0K (s 1), Ly, Ly Ly, L)
SGL\LyL LM M)
L L, L
L, L Lu) L, L L) P
1 M2 —Ml2 12 M3 _M L—j j L3
X Yp o, @)Y ag, (B2) YL p, (F) - (12)

Comparing Egs. (1) and (12), we arrive at the required result given by Eq. (2), noting Eq. (5).

'J. D. Talman, Special Functions (Benjamin, New York, 1968). University, Princeton, NJ, 1960).
2A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton 3A. de-Shalit, Phys. Rev. 91, 1479 (1953).
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A superposition rule is obtained for the matrix Riccati equation (MRE)

W=A4+ WB+ CW+ WDW [where W(t),A(t),B(t), C(t), and D (t) are real n X n matrices],
expressing the general solution in terms of five known solutions for all #>2. The symplectic MRE
(W=W" 4=A4",D = D", C= B")is treated separately, and a superposition rule is derived
involving only four known solutions. For the “unitary” and GL{n,R) subcases (with D = A4 and
C=B",orD= — Aand C = B7, respectively), superposition rules are obtained involving only
two solutions. The derivation of these results is based upon an interpretation of the MRE in terms
of the action of the groups SL(2#,R), SP(2n,R), U(n), and GL(n,R) on the Grassman manifold

G, (R*™).
PACS numbers: 02.30.Hq

I. INTRODUCTION

The main purpose of this paper is to derive superposi-
tion rules for the matrix Riccati equation (MRE)

Wi(t)=A+ WB+ CW+ WDW, (1.1)

where W (t)is arectangular n X k matrix function of t€R and
A, B, C, and D are given, t-dependent coefficient matrices of
dimension n X k, k Xk, nXn, and k X n, respectively. This
work is part of a general program'~ involving the study of
systems of ordinary nonlinear differential equations for
which superposition rules exist; that is, for which it is possi-
ble to express the general solution in terms of a finite number
of particular solutions.

In a previous work,’ it was shown how such superposi-
tion principles could be derived for certain systems of first-
order ODE’s satisfying a group theoretical characterization
due to Lie.* Geometrically, such equations describe the
flows of time-dependent vector fields induced by an infinite-
simal group action. The superposition rule derives from the
fact that these flows lie within the individual group orbits.
Two classes of examples for which such superposition prin-
ciples were obtained'~* consist of the coupled Riccati equa-
tions characterized by the infinitesimal projective transfor-
mations expressed in affine coordinates and by
pseudoorthogonal transformations acting conformally on
certain projective quadrics. These were referred to as vector
Riccati equations of the projective and conformal type, re-
spectively.

In Sec. Il we show that Eq. (1.1) also satisfies Lie’s char-
acterization, with the underlying infinitesimal group action
that of SL(n + k,R) on the Grassman manifold G, (R" * *) of
k planes in R" **. For k = 1, the space becomes RP", and
Eq. (1.1) reduces to the projective Riccati equation.

Another case of particular interest is kK = n, for which
the MRE (1.1) involves n X n square matrices only. This case

* Work supported in part by the Natural Sciences and Research Council of
Canada and the Fonds FCAC pour ’aide et soutien & la recherche.
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is treated in detail by two different methods in Sec ITI, where
it is shown how a superposition principle may be derived for
arbitrary n>2, expressing the general solution in terms of
only five known solutions, chosen arbitrarily up to certain
specified independence conditions. The admissible initial
conditions for these five solutions form a dense set in the
Cartesian product [G, (R*")]°. A simple characterization is
given for such generic sets, and two algorithms leading to the
superposition law are presented, one of them providing an
explicit formula.

Section 1V is devoted to certain special cases of the
square matrix Riccati equation. We first assume that the
matrices in (1.1) satisfy

W=W?', A4=A4", D=D", B" =(, (1.2)

which define “symplectic Riccati equations,” related to the
minimal orbit of the subgroup Sp(2n,R)C SL(27,R). The gen-
eral solution, respecting the condition W = W7, can be ex-
pressed in terms of only four solutions. Under further re-
strictions on the coefficients in (1.1), we obtain Riccati
equations related to the group U{n}CSp(2»,R) and
GL{n,R)C Sp(2n,R) for which two known solutions suffice.

Such symplectic Riccati equations have an interesting
relationship to classical mechanics since they involve infini-
tesimal symplectic transformations acting upon the Lagran-
gian subspaces of a symplectic vector space.>® They arise in
particular in the Hamiltonian formulation of the optimal
control problem with a linear system and quadratic cost
functional.” For other numerous applications of matrix Ric-
cati equations as well as a survey of the existing theory and
references to the original literature, see Ref. 8.

Il. MATRIX RICCATI EQUATIONS

The homogeneous coordinates for a point peG (R * )
are given by the components of a [(k + 7) X k ]-dimensional
matrix:

, X ]Rnxk, YeRk ><k’
(3). *

© 1983 American Institute of Physics 1062



whose columns span the k plane defining p. The point p is
thus identified with the equivalence class [(})] under the
relation:

(1)~(o)

identifying different bases for the same space. The action of
an element

g= (AI{ g)eSL(k +n,R), detg=1

upon G, (R" * ¥ is obtained by the projection 7:(})—[(})]
from the linear action:

5-G)=( 25
gl |- = .
Y, Y’ P Q/\Y.
On the affine subspace defined by detY #0 we may define
coordinates

W =XY 'eR"*¥, (2.4)

in terms of which this action is given by the matrix linear
fractional transformations:

gW—W' = (MW + N)PW + Q)" (2.5)

The infinitesimal group action is given by the homo-
morphism

éislin + kR)—E(G, (R** )

from the Lie algebra sl(n + k,R) to the algebra of smooth
vector fields on G, (R" * *) defined by

I P
¢ &Y (p) = dtf(e P ~0s

GeGL(k,R), (2.1)

(2.2)

(2.3)

(2.6)

Eeslin + k,R), feC= (G, (R"**)).

Expressed in affine coordinates, the image of

( C A)
§_(—D —~B/’
AeRnxk, BeRk Xk,

CeR"™>", DeR**",
is the vector field

¢(§) = - (Aa,u + Wavay + Ca,BWB,u
9
ow,,
For a given curve in sl(n + &,R)

Cit) Alt
si0=( “,
—D(t) —B{t)

Eq. (1.1} defines the flow of the time-dependent vector field
& (& (1)). The general solution is therefore of the form

2.7)

trC —trB=0
+ Wav'DvB Wﬁ/l)

(2.8)

(2.9)

Wit)= M)W, + NtIP()W,+Q(t)]™, (2.10)
where the curve in the group SL(» + &,R)
_ (M) Ni¢)
g")‘(P(r) Q(t))’
(2.11)
Mr)eR™", Nit)eR"™*, P{t)eR**", Qt)eR*>*,

is the unique solution to
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. A\ (M
-5 A
N Q —-D —B/\P Q
for some arbitrarily fixed initial condition
M, No)
glte) = ( , (2.13)
(to) P, 0,

and W,eR"** is a constant matrix determined by the initial
condition for Wt ).

Equivalently, we may consider the linear action of
sl(n + k,R) on R *¥1<* and the corresponding differential

equation:
XN _( C) AN (X(t)
(Y(t))—(——D(t) ~B(z)>(yu))’ (2.14)
X (2)eR™*%, Y(t)eR >~

X(t)

All solutions to Eq. {1.1) may be obtained by regarding (/)
as the homogeneous coordinates for a curve in G, (R" + %),
with affine coordinates

W) =X ()Y ~'(t),
defined whenever Y (¢ ) is nonsingular.

The determination of a superposition rule for Eq. (1.1)
amounts to finding the group element g{z ) entering in Eq.
(2.10), up to a coset in the isotropy group of W, by “solving”
the corresponding relations for { M,N,P,Q ] in terms of a suf-
ficient number of known solutions { W,(z)}.

To summarize, the matrix Riccati equation (1.1) for rec-
tangular matrices WeR">* is associated with the Lie algebra
slin + &£,R). All solutions to {1.1) can be obtained by solving
the linear equations (2.14) for X (¢ ) and Y (¢ ); the solutions of
the MRE (1.1) are then given by (2.15). A superposition prin-
ciple is obtained from Eq. (2.10), once M, N, P, and Q are
determined in terms of a sufficient number of known solu-
tions to the MRE. This can be done for arbitrary & and »n,
following methods developed earlier.’

The most interesting case is that of square matrix Ric-
cati equations (k = n), which is treated in detail in the next
section.

(2.15)

1ll. SUPERPOSITION PRINCIPLES FOR SQUARE
MATRIX RICCATI EQUATIONS

We now restrict ourselves to the square MRE, i.e., Eqgs.
(1.1)for n = k:

Wi(t),Alt), Blt), C(t), D(t)eR™". (3.1)

We shall first establish that the number of solutions needed
for the superposition formula is five (for any 7>2) and spe-
cify the restrictions imposed on these five solutions (or their
initial conditions). We shall call any set of five solutions satis-
fying the established conditions a fundamental set of solu-
tions for the MRE. Next, we use three of the solutions be-
longing to the fundamental set to reduce the MRE to a par-
ticularly simple linear matrix equation for the matrix anhar-
monic ratio of four solutions,

R=(W,— W) (W, - W)W, — W) (W—-W,.
(3.2)

Finally we derive two different forms of the superposition
formula, expressing the general solution W (t ) of the MRE in
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terms of five generically chosen particular solutions (the fun-
damental set).

A. The fundamental set of solutions

Following the general procedure outlined elsewhere,>*
we write the solution of the MRE (1.1) in the form

Wit)=MU+N)\PU+Q)"! (3.3)
where UeR"*" is a constant matrix. The group-valued func-
tion

M) Nt
git)= ( ) }

Plt) o ))ESL{zn,R), M,N,P,QeR"™",

(3.4)

must be determined in terms of a finite number m of known
solutions. The group element g(t ) satisfies the system of lin-
ear equations (2.12) for arbitrarily chosen initial conditions
(2.13) and 4,B,C,D now have values in R"*". This arbitrari-
ness amounts to the fact that the matrix g(# ) can at any stage
be replaced by g(¢ )g, !, where g, is an arbitrary constant

matrix and Uis redefined accordingly. The matrix Uin (3.3)
together with the choice of initial condition g{z,) will deter-
mine theinitial conditions for the solution W (¢ )fort = ¢,. We

will not necessarily impose
N (to)) _ (I 0)
Q (%) 0 1

(3.5)
|

Mz,
Wit,)=U, Ii.e, g(to)z(P((:))

I H

_( -0,
=\, -y, -y,

we can transform U,, U,, and Uj to the *“‘standard” form
Us,=0, Uj=1TI (3.10)

(U5 — 0 should be interpreted as a point on the Grassman-
nian with homogeneous coordinates X = I, ¥ = 0). With no
loss of generality, we can assume that the solutions W(f},
W, (¢ ), and W[t ) correspond to the initial condition matrices
{3.10), since the transformation matrix (3.9) is absorbed into
the definition of g{z ).

The stabilizers in SL(2n,R) of U, of the pair U3 and
U5 and of the triplet U3, U3, and U§ are, respectively,

it ) o=t 2). @-(8 2)

(3.11)

Notice that, when expressed in terms of affine coordinates,
W on the Grassmannian the group G § ~[SL(n,R) ® SL(n,R)
® R') & R**" has a linear affine (inhomogeneous) action,
G2 ~SL(n,R)®SL(n,R) ® R' a linear homogeneous action,
and G 3 ~SL(n,R) ® Z ? acts linearly and by conjugation. For
example if geG § (2.5) reduces to

W' =QwQ " (3.12)

According to the general group-theoretical method,**
knowledge of a given set of solutions permits the reduction of

US> w,
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— (U = U,)(U; — Ul)_IUI)

but rather make full use of the liberty in the choice of g{z,).
We shall, however, call U the “initial condition matrix.”

The number of solutions m in the fundamental set is
determined as the lowest number for which the SL(27,R)
action (2.5) on the Cartesian product [G,, (R*" )]™ of m Grass-
manians is free (except possibly on some singular orbits of
lower dimension). The joint stabilizer G ;' C SL(2n,R) of the
m initial condition matrices U|,...,U,, should thus bejust the
identity transformation. That is, the equations

U, = (MU, + No)(PU;, + Qo)™ ", i=12,.,m, (3.6)

where U, M,, N, P,, and Q, are constant n X n real matri-
ces, should imply

(7 o)=4(o 7). == 3.)

We shall now take five initial condition matrices
U,,...,Us and transform them into a convenient standard
form by a constant matrix linear fractional transformation
[making use of the arbitrariness in the initial conditions for
glr))

Let us start with three matrices satisfying

det(U, — U, )#0, ik =123 (3.8)

By a matrix linear fractional transformation with constant
coefficients

(3.9)

r

the underlying equations to the type associated with the sta-
bilizer of their initial conditions. In the present case, one,
two, or three known solutions, therefore, make it possible to
reduce the MRE to a linear inhomogeneous equation, a lin-
ear homogeneous equation, or a commutator type linear ho-
mogeneous equation, respectively (see below).

In the special case of n = 1, G} already represents the
identity transformation; hence three solutions suffice to ex-
press the general solution of the ordinary Riccati equation in
closed form. For n>2 we must further reduce the stabilizer
by adding more solutions. Since G } acts as in (3.12), the
additional solutions must be such that the equations

U, =8U, 8 ', 8€G;, a=45
should imply G = AI (A€R). It is well known (Schur’s
lemma®'°) that over an algebraically closed field two matri-
ces, U, and U, would suffice in (3.13) to imply G = A/ if and
only if they have no common irreducible invariant sub-
spaces. Over the field of real numbers the situation is slightly
more complicated; however, two generically chosen matri-
ces will still suffice to reduce g, in (3.13) to the identity trans-
formation. Indeed, assume that U, has all eigenvalues differ-
ent, n, of them real and n, complex conjugate pairs. We can
use the stabilizer GJof U3, U3, and U} to reduce U, to its
Jordan canonical form, in this case

(3.13)
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/li,a,-,b,-GR, b,' > 01

Without loss of generality we assume that U,,...,U, are in the
form (3.10) and (3.14) and again absorb the constant matrix
simultaneously transforming U, into U} (i = 1,...,4) into the
initial conditions for g(¢ ). The simultaneous stabilizer of
Ui,...,Us is

5t-{(5 o)l

where Q 1, is any block diagonal matrix of the same structure
as U3 in (3.14).

Finally, let U have no common irreducible invariant
subspaces with U ;. This condition can be described simply
in terms of graph theory. The irreducible invariant sub-
spaces of U} are clearly all one- or two-dimensional. Let us
associate a point P; (i = 1,...,n, + n,) with each invariant
subspace of U3 and introduce an edge (P, P, ) whenever the
matrix Us connects the subspaces i,k. If the obtained graph is
a connected one, then Us and U} have no common irreduci-
ble invariant subspaces, and Eqs. (3.13) will together imply
that G = A1

Let us summarize the results and make some com-
ments.

(1) The subgroup of SL(2n,R), leaving the five initial
condition matrices U,,...,Us specified above invariant, is the
identity group. The group element (3.4) can be reconstructed
from the knowledge of five such solutions (for n>2) since
formula (2.5) can be interpreted as an SL{2n,R) transforma-
tion, taking the five initial conditions into the five solutions
at some ¢ (in a neighborhood of ¢ = ¢).

(2) The five solutions contained in a “fundamental” set
of solutions can be generically chosen, i.e., their initial data
are arbitrary, except for the followng conditions (which de-
fine an open, dense set):

(i) det(U, — U,)#0, k =2,...,5, det(U, — U,)#0.

(ii) For the initial conditions in (3.3) and (3.4)

arranged as in Eq. (3.10), all
eigenvalues of U, are distinct.

(iii) Us does not leave any nontrivial irreducible

invariant subspaces of U, invariant.

Conditions (3.16a) can be reformulated as follows in
terms of the solutions { W(¢),...,Ws(t )} related to { U,,...,Us}
by Eq. (3.3):

(i) det(W, — W,)#0, det(W, — W,)#0, k =2,...,5.

(ii) All eigenvalues of the matrix anharmonic ratio

n,+2n,=n.

(3.15)

(3.16a)
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, (3.14)

bn, + ny
a"- + ny

Ry= (W, — W3)" (W — W)W, — W)~
X (We— W)

and distinct.
(iii) The anharmonic ratio

Ry=(W, — Ws)_l(Ws - W)W, - Ws)_l(Ws - W)

regarded as a linear map leaves none of the

irreducible invariant subspaces of R, invariant.

In fact, by continuity, it is sufficient for these conditions
to hold for some initial value of ¢, say t = t,.

In order to show that conditions (i) in Egs. (3.16a) and
(3.16b) are equivalent; note that any linear fractional trans-
formation may be obtained by a composition of ones of the

type:

(3.16b)

U—AUB (A,B nonsingular) (left and right linear
transformation),
U—U+ C (translation),

U—U ~! (inversion).

Each of these transformations applied to a pair of matrices
U,V leaves the property

det(U — V)50

invariant (assuming, of course, that inversion is well-de-
fined). Therefore since { W,(t),...,Ws(t)} are related to
{U,---Us} by the linear fractional transformation (3.3), the
relations (i) in (3.16a) and (3.16b) are equivalent. The equiv-
alence of (ii) and (iii) in (3.16a) and (3.16b) is shown in the
following section.

The conditions (3.16) play a role analogous to the condi-
tion of linear independence for solutions of linear differential
equations. With no loss of generality we can take U,,...,U, in
the “standard” form (3.10) and (3.14).

(3) The group SL(2n,R) acts freely on a fundamental set
of five solutions. If one more solution is added, it is possible
to form n” independent SL(2#,R) invariants out of these six
solutions of the MRE. These invariants are constant in ¢, and
they thus implicitly determine the sixth solution in terms of
the original five.

B. Reduction of SL(2n,R) group action to SL(n,R)
conjugacy and the matrix anharmonic ratio

We shall now show explicitly how the use of just three
known solutions W(t), W,(t), and W,(t) with initial condi-
tions satisfying (3.8) reduces the problem of reconstructing
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the SL(2n,R) group element (3.4) to that of reconstructing
the SL(n,R) element

_ (Q (#) O
0 Q)

Because of the freedom of choice of initial conditions in
(2.12), we can assume the initial data matrices to be in the

form (3.10). Substituting U3, U5, and U3 successively into
the relation (3.3), we obtain

W, =MP~', W,=NQ ',

) eSL(n,R). (3.17)

W,=M+N)P+Q) "
(3.18)

Solving for M, N, and P in terms of W, W,, W,, and Q, and
substituting back into (3.3), we obtain

W=[W\(W, — W) (W, — W,)QU + W,Q]
X[(Ws— W) (W, — W,)QU + Q17" (3.19)

Formula (3.19) expresses the general solution W in terms of
three particular solutions and one unknown matrix
QeSL(n,R). From (3.19) we can express QUQ ~ ' in terms of
W, W,, W,, and W,. We use the “matrix anharmonic ratio”
R introduced in (3.2), and from (3.19) we have

R=0QUQ " (3.20)

We have thus obtained the known result® that the matrix
anharmonic ratio R is conjugate to a constant matrix U. This
result is a consequence of the fact that the isotropy group G ;
[(3.11)] acts by conjugation on the initial data, and we have
thus put the result (3.20) into a group-theoretical context.

The conditions (3.8) imposed on the initial condition
matrices ensure that, provided the coefficients 4, B, C, and D
in the MRE (1.1) are sufficiently regular, the inverses
(W, — W,)"'and (W, — W,;)"'in (3.2) and (3.19) exist at
least within some neighborhood of ¢ = #,,. The equivalence of
(ii) and (iii) in Eqs. (3.16a) to those in (3.16b} follows from Eq.
(3.20), since conjugation preserves the eigenvalues and the
property that a pair of matrices have no irreducible invariant
subspaces in common.

The anharmonic ratio R is defined for solutions W satis-

fying

det(W — W )5£0. (3.21)
If this condition is not observed, but we have

det(W — W,)#0, (3.22)
then we can use a different anharmonic ratio
R=(W—W,) (W, — W)W, — W)

X(W,— W) =0VQ " (3.23)
If both R and R exist, then we have

R=R"', v=U""\ (3.24)

For n = 1 the MRE reduces to the ordinary Riccati equation
and the matrix anharmonic ratio becomes the ordinary an-
harmonic ratio. The quantities W, R, and U are then all
scalars, and (3.20) simply states that the anharmonic ratio of
four solutions of the Riccati equations is a constant. For n>2
we must still determine the conjugating matrix @, i.e., recon-
struct the SL(n,R) group element Q acting as in (3.20).

Note that (3.19} and (3.20) were derived by a partial
reconstruction of the SL(2n,R) group element. Let us reder-
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ive these formulas by a different procedure, namely lineariz-
ing the MRE. In the process we establish further properties
of the matrix anharmonic ratio. Let W, W,, and W, again be
three solutions of the MRE (1.1) satisfying (locally) the con-
ditions det(W, — W, )#0, i = 1,2,3.

Perform a matrix fractional linear transformation from
W to a new variable S putting

S=(W—w,) . (3.25)

If Wand W, satisfy the MRE {1.1), we find that S satisfies a
linear inhomogeneous equation of the type corresponding to
the stabilizer of one initial condition

S= —BS—-SC—-D,
B=B+DW, C=C+ W,D.
A second transformation
IT=S—-8=(W,— W)ﬂl(W— Wiw, — Wz)_]
(3.28)

introduces the variable T satisfying a linear homogeneous
equation, corresponding to the stabilizer of two initial condi-
tions:

T=—Br-T1C (3.29)
['S; is a solution of (3.26), W, W, and W, solutions of the
MRE (1.1)].

Finally, use the third particular solution W, of (1.1), or
equivalently, a particular solution T’ of (3.29) to put

(3.26)
(3.27)

R= TsT_l = (Wz - W3)-1(W3 - W)
X(W, — W)~ (W — W,). (3.30)

We have again arrived at the matrix anharmonic ratio R;
from (3.29) and (3.30) we find that R satisfies a linear com-
mutation type equation, corresponding to the stabilizer of
three initial values:
R=[R,B] (3.31)
The solution R of (3.31) can be written in the form (3.20),
where UeR"*" is an arbitrary constant matrix [the same as
in (3.19) and (3.20)] related to the initial conditions for the
general solution W of the MRE, or, equivalently, to the ini-
tial conditions for the anharmonic ratio of the four solutions
W, W,, W,, and W,. Equation (3.31) implies that the matrix
Qin (3.19) and (3.20) must satisfy the simple linear equation

Q= —BQ, Q0= (3.32)
(for some initial condition Q,). Equation (3.32) can of course
be solved numerically and in some cases analytically.!' We
are, however, after a superposition law and shall hence ex-
press Q (or R ) in terms of two more solutions of the MRE
(1.1).

Let us make a comment on the group theoretical signifi-
cance of the matrix anharmonic ratio R. For n = 1, R is the
SL(2,R) group invariant, the existence of which is guaran-
teed by the fact that the isotropy subgroup of SL(2,R) for
three different points is the identity. For n>2 the group in-
variant is not R itself but rather U = Q ~'RQ, where Q in-
volves two more solutions. The existence of this n>-dimen-
sional invariant, depending on six solutions is guaranteed by
the fact that the isotropy subgroup of SL(21,R) leaving five
points invariant is the identity subgroup. From R itself we
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may form the elementary trace invariants {TrR'},_,__,,
which in view of (3.31) or (3.20) remain constant in ¢, but for
n3>2 the number is not large enough to be used to determine
W in terms of { W,,W,,W,} alone.

C. The superposition formula
1. Reconstruction of the SL(n,R) group element Q

For n>2, assume that two more solutions W, and W of
the MRE (1.1) are known and such that the matrices R, and
R satisfy the conditions (3.16b) (ii) and (iii). Since these are of
the form

R, =QU, 07", a=45, (3.33)
for some constant “initial vaue” matrices U,, U, with Q
arbitrary up to a constant matrix multiplier on the right, we
may, without loss of generality, assume U, is the Jordan
normal form of R, and, hence, after choosing some ordering
of the eigenspaces, is of the form U3 of Eq. (3.14). We may
thus write Q (¢ ) in the form

Qt)=Qt)@pt), (3.34)

where Oy, is in the stabilizer of U} and Q,eGL(n,R) is now
determined from (3.20),

R(1)Qo(t) = Qolt}US, (3.35)
as being any matrix which reduces R ,(t ) toits Jordan canoni-
cal form U} . The columns of Q,(t ) are vectors spanning the
irreducible invariant subspaces of R (¢ ). The first n, columns,
corresponding to the real eigenvalues A, are determined
uniquely, up to normalization, as the real eigenvectors g, (¢ )
of R,(¢). The remaining 2n, columns correspond to two-di-
mensional invariant subspaces, one for each complex conju-
gate pair of eigenvalues (@, + ib; ). An arbitrary basis can be
chosen in each invariant subspace, e.g., by taking the real
and imaginary part of each complex eigenvector r; + ip,.
The entire ambiguity in Q,, is absorbed in the as-yet unknown
matrix Q. Thus Q, can be chosen to be

QO = (Ql’---’qn, rrn, + lspnl +1 ""rn, + n,’pn, + ny ) (336)
Finally we use the last solution W and the corresponding R
to calcuate the n; + 27, independent real entries in Q , from
the system of linear algebraic equations

(@5 "Rs(t)Qo}0p = Qo Us, (3.37)

where Us is defined to be the value of Q 5~ 'R,(1,)Q, at some
arbitrarily chosen initial time ¢ = ¢, This determines @, and
hence Q uniquely (up to an immaterial scalar multiplier).

Finally the superposition formula is obtained in one of
two forms

W=[W\(W; — W,)" (W, — W3)QU + W,Q]

X[(W; — W)~ (W, — Wy)QU+ Q]~'  (3.38a)
= [WZQV+ WI(W3 - Wx)_l(Wz - Ws)Q]
X[QV+ (W — W)W, — W,)Q]~",  (3.38b)

where Q is completely specified as @ = Q,Qp, by (3.36) and
(3.37) The formulas (3.38a) and (3.38b) are equivalent if
detU 50, detV #0; then we have U=V — 1,

We emphasize that we are dealing with the generic situ-
ation and that the fundamental set of solutions W,,..., W;
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consists of five arbitrary solutions satisfying (3.16). [The ini-
tial conditions W, (¢} (i = 1,...,5) do not have to be chosen in
the standard forms (3.10) and (3.14) which we have been us-
ing purely for convenience.]

2. Superposition formula for matrix anharmonic ratios

The matrix anharmonic ratio R satisfies Eq. (3.31). The
solutions of this equation, in addition to forming a linear
space, also form an associative algebra under matrix multi-
plication. Indeed, the commutator character of this equation
assures that the product of two (or more) solutions is again a
solution. It follows that not only can we write a linear super-
position formula

R= z ¢,R,,
i=1

involving n? linearly independent solutions, but that we can
generate n? linearly independent solutions of (3.31) as poly-
nomials in terms of a small number of generators of the asso-
ciative algebra. As a matter of fact, two appropriately chosen
solutions R, and R, of {3.31) will suffice. In terms of the
initial data U, and U, we have

R,=QU,Q"", Rs=0U, Q"'
and
R.R, =QU,U,Q " (3.41)

If U, and U; generate polynomially the entire algebra of
matrices UeR"*",i.e., n* linearly independent initial condi-
tions, then R (¢ ) and R(r ) will generate polynomially the en-
tire associative algebra of solutions of {3.31).

The necessary and sufficient conditions for U, and U to
generate the entire algebra of matrices in R">" are that®!°

(1) R, and R have no common invariant irreducible
subspaces.

(2) The only matrices simultaneously commuting with
R, and R are multiples of the identity. (This second condi-
tion would be a consequence of the first for an algebraically
closed field, but we are working over the field of real
numbers.)

It is sufficient to verify that these two conditions be
satisfied for some specific value of ¢, say ¢ = t,. To proceed
further, consider the generic case when one of the matrix
anharmonic ratios, say R,, has n different nonvanishing ei-
genvalues, so that U, can be chosen as its Jordan canonical
form U3 of (3.14). The powers U3, (U3 )%,...,(U3 )" are linear-
ly independent, and linear combinations of them provide us
with the » matrices

EpsE,, SuiireosSn gns Josiroide sns (3.42)

A ]

(3.39)

(3.40)

where
Bk = 64i0ars Sa)ik =6ia0ia + 810 s 16k 1s
(Ja)ik = 5ia‘5ka+ 1 6ia+ 151«1,
n, + 1<a<n; + n,,

I<agn,, Lk=1,.n 4 2n,.

(3.43)
The matrix Rs must be chosen so as to satisfy the above
conditions (1) and (2}. This can be assured by requiring that,
in the basis where R,(t,) = U}, the matrix Rs(t,)=U; has the
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property that its nonzero entries define the arcs of a strongly
connected oriented graph [we introduce an arc from the
point P; to P, if (Us); #0]. An example of such a Us and its
graph is

0 = 0 =
00 0] E S
v, =|* =2 a4
0+ 0 +f KA
00 * 0

The graph is (3.44) is strongly connected as an oriented
graph, since we can move from any point to any point follow-
ing the arrows. Note that this is a stronger requirement than
that imposed on Us in the previous subsection, where the
graph had to be connected, without regard to orientation.

Let R4(2,) in the appropriate basis correspond to a
strongly connected oriented graph and introduce the nota-
tion M,, i = 1,...,n, + 2n,, for the matrices in (3.42). Then
the matrices

X, =MUM,, 1<ik<n,+ 2n, (3.45)
will be linearly independent and span R"*" if
X, #0, 1<ik<n, + 2n,. (3.46)

More generally, let X,, = Oandletaj, j,--- j,b be a permissi-
ble path from a to b on the oriented graph corresponding to
Us. Then we replace the missing element X, in the basis for
R"*" by

Y=X,X, ;X

Jvd2 " b (3.47)
To avoid unnecessary complications, let us first assume

that all entries in U are nonzero,

(Uslue = 4y #0, (3.48)
in the basis where Uy, is in its Jordan canonical form (such
matrices are dense in R"*"). The superposition formula for
the matrix anharmonic ratio R can then be written as

R= Y auR{RsRS.

Jk=1

(3.49)

The superposition formula for the MRE is obtained by using
(3.2) for R, and R; in (3.49) and then substituting the expan-
sion (3.49) for R into (3.19):
W=[W\(W,— W) (W, — W)R + W)]
X (W — W) (W, — W)R +1]7". (3.50)

In the more general case when U does not satisfy (3.48)
in the basis where U, is given by (3.14), we write the superpo-
sition formula for the matrix cross ratios as

R = z a3 Cis

k=1
where the matrices C,, form a basis for the solutions of Eq.
(3.31), defined by

C, = RiRR R I'RR j:RIRRRE,

i

(3.51)

(3.52)

where (i j,--j,k ) is any permissible path on the graph corre-
sponding to Us.

IV. SYMPLECTIC MATRIX RICCATI EQUATIONS

If, instead of considering the most general equation as-
sociated with the action of SL(2n,R) on G, (R*"), we restrict
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ourselves to that associated with certain subgroups, particu-
lar forms of the matrix Riccati equation (1.1) arise which
may be studied in greater detail. Since the subgroup will not
generally act transitively on the entire space, it may be neces-
sary to add further constraints characterizing particular or-
bits. The previously derived superposition rule will not nec-
essarily respect such constraints, and therefore a new
analysis may be necessary. Examples of such reductions are
given below and a superposition rule is derived for each case.

A. The symplectic group SP(217,R)C SL(21,R)

A particularly interesting reduction of Eq. (1.1) is ob-
tained by requiring the curve £ (¢ ) in Eq. (2.9) for n = k, to lie
within the symplectic subalgebra defined by

sp(2n,R) = {£esl(2n,R)|EK + KET = 0}, (4.1)

where the symplectic form on R?" is defined by the matrix

K= ( _01 g). (4.2)

The curve £ (¢) thus has the form

_{ Cit) Ar)
§(H—(_Dm -CT(t))’ (4.3)
where
A(t)=AT({), D{)=DT(). (4.4)

The corresponding curve g(¢ ) in SL(2n,R), as defined by Egs.
(2.11)—(2.13), satisfies the condition

gkg"=K (4.5)
provided g(t,) does, implying that it lies within the symplec-
tic subgroup SP(2n,R). This subgroup no longer acts transi-
tively on the full Grassmanian G, (R*"), since it preserves the
symplectic inner product. However, if we restrict ourselves
to the submanifold G %(R?") of totally isotropic n planes in
R?", the so-called Lagrangian subspaces>® with respect to
the symplectic form K, it is easily verified that the group
action is well defined and transitive. { These spaces comprise
the orbit of minimal dimension [in(n + 1)] and play an im-
portant role in the geometrical formulation of Hamiltonian
dynamics and quantization.'?} In terms of homogeneous co-
ordinates (¥) the condition of isotropy becomes

XTY—YTX=0, (4.6)

which, in affine coordinates W = XY ~!, is equivalent to
W=wT (4.7)

The reduced Riccati equation is

Wit)=A(t)+ W)CT@)+ C)W(t)+ WD ()W (),

(4.8)
A=AT, D=DT,
where the symmetry property
Wit)=WTt) (4.9)
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may be seen to persist for all #, provided it holds for z = £, as
a consequence of Eq. (4.8) and the conditions (4.4).

In deriving a superposition rule for Eq. (4.8), we begin
by following the same procedures as in the previous section.
Given two known solutions W (¢ }and W,(t }, and an arbitrary
one, W (z), the quantity

T(t)=(W— W,)"\(W— W) W, — W)~ (4.10)
satisfies the linear equation

Tiy= —CTT-TC, (4.11)
where

Cit)=C(t)+ W, ()D(t) (4.12)
It follows that 7°(z) develops in ¢ according to

T(t)=G(t)T,G"(t), (4.13)
where G (t )eGL(n,Rj satisfies

G(t)= —C'G(t), G(t,)=G, (4.14)

with some conveniently chosen initial condition G,. Given a
third solution W,(t ) of Eq. (4.8) such that T,(¢ ) defined corre-
spondingly as

Tyt)= (W, — W) '(Ws = W)W, — W)~ (415)
is nonsingular, the arbitrariness in the initial value G, im-
plies that the symmetric matrix T5(z,) may be assumed, with-
out loss of generality, to be of the form

T;(t0) = G (to)M,, G T (1), (4.16)
where
1, 0
1, =(0 —-Iq)’ (4.17)
and hence for arbitrary ¢
Ty(t)=G(t),,G"(r). (4.18)

Since T4z ) is symmetric, it may be diagonalized by an ortho-
gonal transformation and therefore expressed as

Tyt) = O\(t)D (1), D ()0 {(t) (4.19)
where O,(t )0 (n)is any orthogonal matrix of eigenvectors of
Tt ) and D (¢ ) is the diagonal matrix diag (|4,]"/%-|4,['/?),
the A,’s being the corresponding eigenvalues. A certain non-
uniqueness associated with the ordering of and rotations
within the subspaces of equal eigenvalue is involved in (4.19),
but this is of no importance, and we assume some choice of
normalized eigenvectors is made. Now, defining

O,(t)=D ' 1)OoT(t)G (z), (4.20)
it is easily verified that

01,07 =1,; (4.21)
that is, O,(t J€O ( p,q). Now, define the matrix

T(t)=D~'07TOD ~'I,, (4.22)

which is self-adjoint with respect to the inner product asso-
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ciated with the quadratic form I, i.e.,

L,T7=TI, (4.23)
and T (t) develops according to

T(t)=0,t)T,0; \(t), (4.24)
where

To= Tol,,. (4.25)

Let T ,(¢) be the corresponding quantity associated with a
fourth solution W {t) of Eq. (4.8),

T4(’) =D #l(t )0 1T(W4 - WI)—I

X(Wy— W)W, — W,)~'0,D I, (4.26)

and assume that all its eigenvalues are distinct. These eigen-
values are independent of ¢ because of Eq. (4.24). It follows
from the self-adjointness (4.23) of 7.(t) and the fact that all
eigenvalues are assumed different that none of the eigenvec-
tors are isotropic (zero length). Some of the eigenvalues and
eigenvectors may be complex, but because 7(¢ ) is real, these
must come in complex conjugate pairs. Let

{Q.,Q.}x 1. be the complex eigenvectors, with eigen-

values {#, ., ), _ . »- These may be normalized so that

lequa = 6T1pq6a = + 1 (427)
It follows from self-adjointness that, separating into real and
imaginary parts,

t )
Q,= ——(p. +iq,)

— (4.28)

the vectors {p,,q, | areall mutually 7,, orthogonal with nor-
malization:

Pl p.=+1, allq,=—1 (4.29)

The remaining n — 2m real eigenvectors may be split into
twosets {Q,*,Q,” | with eigenvalues {x,*, 1;” | and norma-
lization:

QL,Q = +1, i=l.,p—m,
(4.30)

Q,Q =—1, j=1l.,9—m.

Forming the matrix with these vectors as columns,

Q (t ) = (Ql+ "'Q ;» m P P Qi '"qth_ '"Qq_— m )y

(4.31)

the orthonormality conditions following from the self-ad-
Jjointness of T, imply

QM QT (t) =1,

that is, Q (t )0 p,q). Moreover, since those columns of Q (¢}
are the real and imaginary parts of the eigenvectors, we have

T,t)=Q()THQ ~'(t), (4.33)
where

(4.32)
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+

123

+
:up—m

and (a,,b, ) are the real and imaginary parts of 1, (all nonin-
dicated entries vanish). Using the remaining arbitrariness of
the initial value O,(t,) in Eq. (4.24), we may assume, without
loss of generality, that

To=Tp. (4.35)
Comparing Eqs. (4.24) and (4.33), we find that
O,(r) = Q(z)S, (4.36)

where S'is in the centralizer of T, in O ( p,g). Since the eigen-
values are all distinct, .§ can only be of the form:

S =diag(+ 1, + 1,..., + 1). (4.37)

It follows that S must be constant provided all quantities
vary smoothly in # and may therefore be assumed equal to 1
by absorbing its value in the arbitrary initial condition. Simi-
larly the finite arbitrariness associated with the ordering of
the eigenvectors is absorbed in the initial condition. Thus
0,(t)is determined to equal the matrix Q (¢ ) formed from the
normalized eigenvectors of 7. Combining the inverse of Eq.
(4.10) with Egs. (4.13), {4.15), (4.19), (4.20), and (4.24), we
arrive at the following superposition formula, expressing a
general solution W () in terms of four particular solutions
Wi2),...,W,t)
Wit)=[W,.0,DQT,+ W)W, — W,~'0,D ~'1,.0l, |
X [0,DQT, + (W, ~ W,)"'0,D ~'1,,01,,]""
(4.38)
or
Wit)=[WoW,— w)~'o.D _llquSo + W,0,DQ |
X [(W,—Ww\)~'0,D "', QI,S,+0DQ]™ ",
(4.39)

where O,(t }€O (n) is the orthonormalized matrix of eigenvec-
tors of

Tyt) = (Wy— W)~ (W, — W)W, — W,)~' (4.40)
with eigenvalues
Ay(2)yesAp(t)>0 and A, ((2),...A,() <O,

D(t) = diag(I2,(1)]"/2,.... |4, (r)| /3, (4.41)

Q()0(pyg), Pp+qg=n
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(4.34)

a,

H

p’q—m_,

r

is the matrix of Eq. (4.31), consisting of the real and imagi-
nary parts of the eigenvectors of
Tt)=D " '(t)O{it)[(Wy — W)~ '(W, — W)

X (W, — W)~ "10,(t)D 't M, (4.42)
normalized as in Egs. (4.27),...,(4.30); T, and S, are any con-
stant, symmetric matrices. It is assumed that all the quanti-
ties (W, — W), (W, — W), (W, — W,), and (W, — W,) are
nonsingular, and the eigenvalues of T, are all distinct. The
two forms (4.38) and (4.39) are given in order that all solu-
tions be obtainable without involving infinite limits. Both
forms are valid if T, = S ' is regular.

B. Subgroup GL(n,R)C SP(2n,R)

Equation (4.8) may be specialized further by requiring
the algebra element £ (¢ ) to satisfy not only (4.1) but also

&S =JE, {4.43)
where

=(} ) (4.4

0
which implies that it has the form
C(r) Al ))
t)= 4.45)

=50 oo (
with

A=A4", C=~-C" (4.46)
The map

zp:(j g)—>A + Cegl(n,R)

defines a Lie algebra isomorphism with inverse determined
by separating an arbitrary element in gl(»,R) into its symmet-
ric and antisymmetric parts A4 and C, respectively. The curve
g(t) determined by Eq. (2.12) lies correspondingly in the
GL(n,R) subgroup of SP(2n,R) defined by

gJ=Jg {4.47)

provided the initial valueg(f,) does. Thisimplies that g( } is of
the form
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2= vy arie) (a8
where

M™M _N'"N=1, M'N=N™M. (4.49)
The reduced Riccati equation now becomes

W=A+CW—WC— WAW,

A=A47, C= -C7”. (4.50)

Assuming that (W — 1) is nonsingular, we can make a
change of coordinates

WV =(W+ 1 )W—1)"", (4.51)

which is equivalent to transforming X and g into block diag-
onal form. This linearizes the equation directly:

V=FV+ VFT, (4.52)
where
Flt)=Clt)+A(t) (4.53)

Since this is of the same form as Eq. (4.11), the procedure
described there, after reducing the problem to this case, may
be applied here, thereby determining the general solution,
W {t),to Eq. (4.50) in terms of two known solutions W, (¢ Jand
W,(t). Explicitly, we have
W(t)=(0,DQVoQ DO + 1)0,DQV,Q 'DOT — 1)7",
(4.54)
where O,(t €O (n) is the orthonormalized matrix of eigenvec-

tors of V,(¢) with eigenvalues 4,(¢)--4,(¢) >0 and
Ay o[ () <0;

D (r) = diag(|4,(t)]'%,....]4,()]'?), (4.55)
Q()eO(pyg) p+qg=n,
is defined by Eq. (4.31) in terms of the eigenvectors
{Q",Q;.,Q,,Q, } of
V(t)=D ~'(t)O[(t)V{t)0,(e)D ~\(t),, (4.56)

normalized as in Egs. (4.27)-(4.30), and V, is any constant
symmetric matrix. Again, it is assumed that V(¢ ) is nonsin-
gularand ¥ (¢ ) has n distinct eigenvalues with all eigenvectors
nonisotropic with respect to 7.

C. Subgroup U(n)

An alternative reduction of the symplectic group is ob-
tained by requiring, in addition to (4.1) and (4.5}, the condi-
tions

EK—KE=0 (4.57)
and

gK —Kg=0. (4.58)

This restricts £ and g respectively to the subalgebra and sub-
group consisting of elements of the form

=5, 2 459

- —A C ’ ( N )
C= —CT7, A=A47, (4.60)

and
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_(M N)
8=\~ M/
MMT+NNT=1, MN=NTM. (4.62)

These may be identified with the group U(n) of unitary ma-
trices and its Lie algebra u(n) of anti-Hermitian matrices
through the correspondance

gM + iNeU(n), £«C + ideu(n). (4.63)

It is also easily verified that this subgroup acts transitively on
the Lagrangian subspaces, with isotropy group conjugate to
O(n), thereby allowing the identification:

G2(R"~U(n)/O(n).
The Riccati equation associated with this action is thus:
W=A{t)+Ci)Wit)—W({t)C(t)+ W(t)A ()W)
(4.64)

(4.61)

with

City= —CT7(t), A{t)=A4T(). (4.65)
Proceeding as in the previous example, a map taking & (¢ Jand
g(2 ) into block diagonal form is equivalent to the transforma-
tion

W—V=(W+)W-—i" {4.66)
(valid for all W, since the eigenvalues are real). The resulting
equation for Vis

V=FV+ VFT, (4.67)
where

F = C — ideu(n). (4.68)
It follows that the general solution to (4.67) is of the form

V=UV,UT, (4.69)
where

UeU(n) satisfies

U=(C—id)U, Ul(t)="U, {4.70)

for some arbitrarily chosen U,. Note that the definition
(4.66) of V in terms of the symmetric real matrix W implies
that it may be diagonalized by an orthogonal transformation

to the form diag(e"”‘,...,e"”"). Moreover, a further transforma-
tion of the type (4.69) may be applied to map these phases to
zero. It follows that given any particular solution W,(t) of

Eq. (4.64) and the corresponding solution ¥(¢) to Eq. (4.67)
defined through (4.66), the initial value ¥,(z,) may, without
loss of generality, be assumed to be of the form

Vilt)) = Ulto)U (1), (4.71)
and therefore, for arbitrary ¢,
Vie)=Ue)u'()
=0,t)DYt)0 (), (4.72)

where O(t }€O (r) is a matrix of orthonormalized eigenvec-
tors of ¥,(t) [and hence also of W (¢ )], and D ?(t ) is the diag-
onal matrix of eigenvalues diagf{ (1, + /)/(A;, — i),...,

(A, +i/(A, — i)}, where A ,(t) are the eigenvalues of W,(t).
Making an arbitrary choice of signs in defining D (¢), Eq.
(4.72) implies that U(z ) may be written in the form:
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U(#) = 0,(e)D (£)0,(z), (4.73)
where O,(t }eO (n). A certain nonuniqueness is again involved
in such a decomposition related to the ordering of eigenvec-
tors and rotations among those of equal eigenvalues, but this
is of no importance and we assume some choice has been
made with all quantities varying smoothly in z. Let W,(t )bea
second solution of {4.64) and

Vo) = [Wyft) + IWsle) — )~
Define
Vt)=D'0Tv,0,D !

=D '0OTW,0D '+ §D'OTW,0,D ' — jj~!

= 0yt)Vo{1o)0 1 (1), 4.75)
where, without loss of generality, we can assume ¥,(t,) to be
diagonal. Assuming that the eigenvalues of ¥ (r) are all dis-
tinct, which is valid for a dense subset of solutions, the ortho-
gonal matrix is essentially uniquely determined to consist of
the orthonormalized eigenvectors of ¥,(t ) (hence also of
D ~'0{W,0,D ~'). The nonuniqueness again consists of
discrete factors of the type diag{ + 1,..., + 1) and the order-
ing of the eigenvectors. By the assumption of smoothness in
t, these are all constants and may be absorbed in the initial
conditions. Combining the inverse of Eq. (4.66) with Eqs.
(4.69), (4.72-4.75), we obtain the following explicit superpo-
sition formula expressing the general solution W (¢) of Eq.
{4.64) in terms of two known solutions W (t) and W,(¢):

. 0,D0V,0TDOT + 1
1 )
0,D0,V,0TDOT — 1

where O(t ) is the matrix of orthonormalized eigenvectors of
W,(z), D (¢ )is defined in terms of the corresponding eigenval-
ues {4;} by

(4.74)

Wit)=

(4.76)

greny

D2(1)=diag[/{‘ L +l]

A, —i Ay —1i
and O,(t) is the orthonormal matrix of eigenvectors

D ~'07W,0,D ~', whose eigenvalues are assumed all dis-
tinct.

V. CONCLUSIONS

The main results of this paper are the following.

1. We have shown that the rectangular n X k matrix
Riccati equation (1.1) is interpretable in terms of the infinite-
simal action of the group SL{n + &,R} on the Grassman
manifold G, (R **). It follows that a superposition rule ex-
ists for the solutions of such equations.

2. For the case of square matrices (n = k ), we have used
this characterization to obtain two different versions of this
superposition rule, expressing the general solution for arbi-
trary n»2 in terms of only five known particular solutions.
The first version is provided by Eqs. (3.38) together with
(3.36) and (3.37), the second by Eq. (3.50) together with (3.2)
and (3.49) or (3.51).
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3. A case of particular interest is the symplectic matrix
Riccati equation (4.8), for which we have obtained the super-
position rule (4.38), (4.39), involving only four known parti-
cular solutions. Two subcases corresponding to the sub-
groups GL{n,R)C SP(2n,R) and U{n)C SP(2n,R) are Egs.
(4.50) and (4.64), respectively, for which we have the super-
position rules {(4.54) and (4.76), involving only two solutions

each.
4. The five solutions forming a “fundamental set of so-

lutions” in the SL(2n,R), as well as the four solutions in the
SP(2n,R) case are generically chosen [their initial conditions
form a dense open set in [ G, (R*)]° or [ G 2(R?")]*, respec-
tively]. In practical calculations we can, of course, make a
convenient choice of initial conditions and avoid complica-
tions due to complex eigenvalues of R, in the SL(2n,R) case
or negative eigenvalues of T, in the SP(2n,R) one.

Such equations arise in particular in the study of Back-
lund transformations for the generalized nonlinear o mod-
els.'>15 The application of the present results to numerical
studies of the matrix Riccati equations arising in optimal
control theory is in preparation.
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Restricted multiple three-wave interactions, in which a set of wave triads interact through one
shared wave, are discussed. It is shown that this system is integrable when all triads have equal
coupling coefficients regardless of the frequency mismatches. This system is then used as a
starting point from which to determine integrable cases of a more general class of three-wave

interactions.

PACS numbers: 03.20. + i

I. INTRODUCTION

This paper is the second in a series of three papers de-
voted to determining under what circumstances restricted
multiple three-wave interactions may be treated statistically.
A minimal condition is that the system be nonintegrable. In
the first paper,' Painlevé analysis was used to help find inte-
grable cases, and numerical evidence was provided, indicat-
ing that when the system has the Painlevé property of pos-
sessing only simple movable poles in the complex time plane,
the system is integrable and otherwise it is not.

From a mathematical point of view, this system appears
to be the simplest possible multiply interacting three-wave
system with an arbitrary number of triads and, as such, can
be analyzed in detail. Thus, this system provides a useful
platform from which to attack certain aspects of more gen-
eral multiply interacting systems, much as the restricted
three-body problem provides a useful platform from which
to attack the full three-body problem.?

Restricted multiple three-wave interactions are those in
which an arbitrarily large set of three-wave triads interact
with each other through one wave which they all share. It
has already been shown in Ref. 1 that these interactions are
described by the Hamiltonian

N
H= z [%An']n —%An']llz _6)1('10‘]”‘]7’!)1/2

n=1

X cos(@, — 6, — 64)], (L.1)

where J,, and 6, are the action-angle variables of the shared
waveJ,,6,,J.,and 8 are the action-angle variables of the
two other members of the nth triad, A, =w, — ®, — @, is
the frequency mismatch, €, is the coupling coefficient, and
N, the number of triads, may be arbitrarily large. We shall
assume €, > 0, for if any of these coupling coefficients are
less than zero, we need merely add 7 to 8, to reverse that
coupling coefficient’s sign. This system appears whenever
one has a “test wave” interacting conservatively with a spec-
trum of otherwise noninteracting waves, and was first used
by Watson, West, and Cohen? to model the growth of a low
frequency internal ocean wave due to its interaction with a
spectrum of higher frequency surface waves. Meiss* has stu-
died this system using a variety of statistical assumptions
and proposed it as a model for both ocean wave and plasma
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turbulence. Paradoxically, he has also suggested that this
system may be completely integrable, a conjecture which
was disproved in Ref. 1. In the third paper of this series, we
discuss the statistical assumptions and show that they too
are not generally valid.

In this paper, we are entirely concerned with demon-
strating the integrability of the restricted system, as well as a
much larger class of systems, in certain special cases. In Sec.
II, we demonstrate that the restricted system is integrable
when the coupling coefficients are all equal, but the frequen-
cy mismatches are arbitrary. We do so by first taking the
apparently complicating step of converting our ordinary dif-
ferential equations (ODE) into partial differential equations
(PDE), and then using a formalism developed by Ablowitz
and Haberman® to, in effect, find a Lax pair for the system.
The system was previously demonstrated to be integrable by
Meiss® in the simpler case where all coupling coefficients and
all mismatches are equal using a trial-or-error approach. In
Sec. I11, we use the method of asymptotic expansion to ex-
tract the required number of integrals of the motion, mutual-
ly in involution. The approach is similar to that used by
Haberman’ and many other authors. In Sec. IV, we show
that the restricted system may be made integrable, no matter
what the coupling coefficients, by adding further waves with
appropriate coupling coefficients, and, hence, the restricted
system is just one of a large class of systems which can be
made integrable by an appropriate choice of coupling coeffi-
cients. In Sec. V, we show that in the special case where all
the coupling coefficients are equal and all the frequency mis-
matches are equal, the restricted system can be explicitly
integrated in terms of elliptic integrals and their quadra-
tures. Finally, Sec. VI contains a summary.

Il. DETERMINATION OF LAX PAIRS FOR THE
RESTRICTED SYSTEM WHEN ALL COUPLING
COEFFICIENTS ARE EQUAL

Letting bg=(Jo)'* exp( — i), b, =\/, "> exp( — i6,
and b ,=(J,)""? exp( — i6 ), wefind that Eq. (1.1) generates
the equations of motion

. N
by=1i > €,b,b*

n=1
b, = —id,b, + i€, bob, 2.1)
b =1id,b; + lie,b2b,,

1
2
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where n = 1,...,N, which, from now on, will be understood.
We may convert Eq. (2.1) into a PDE by writing

N

bO.l = YObO.x + %l 2 enbnb r’r*’

n=1
bn,l = Yn bn,x + 'lz'ifn bOb I,I’ (22)
b :l,t = }/:‘b :I,X + %ienb gbn’
where b, b,,, and b, are now functions of both x and ¢, y,,
¥, and ¥, are constants, and the subscripts x and ¢ indicate

differentiation with respect to x and ¢. From Eq. (2.2), we
may return to Eq. (2.1) by imposing

bofx,t) = byt ),
b,(x,t)=b,(t)exp( — id,x/2v,), 2.3)
b, (x,t)=>b,(t)explid,x/2v.),
as well as
Yn= —Va (2.4)

Equation (2.4) is required if the x variation is to remain unal-
tered for all time.

Following Ablowitz and Haberman,® we now consider
the differential matrix eigenvalue problem

¥, =iD¢ + Ny, (2.5)
where 1 is an M-dimensional vector eigenfunction, ¢ is the
eigenvalue, and D and N are M X M matrices. We choose the
time variation of ¥ such that

P, = Q. (2.6)
If we now require that
Q, =N, +i£ [D,Q] + [N,Q], (2.7)

where the square brackets indicate commutation, it immedi-
ately follows that §, = 0.

Next, we choose Q to have the form

Q=Q" +£Q°, (2.8)

where Q' and Q" are independent of £. Expanding Eq.(2.7)
in powers of £, we then find

0 =i[D,Q")], (2.9a)
QY =i[D,Q"] + [N,Q°], (2.99)
Q' =N, + [N,Q"]. (2.9¢)

We further choose D; = 8,a; and Q) = §,c;, where a; and
¢; are assumed real, so that Eq. (2.9a) is automatically satis-
fied and Q' = 0. From Eq. (2.9b) we find

QW = [le; —en)ila; ~ a;) Ny, for i#k,  (2.10)

wherea; #a,.1fa; = a, and ¢; = c,, then any choice of Q {}/
and N, is consistent with Eq.(2.9b), and we shall choose Q }})

= a,; N, , where a,, is an arbitrary constant. The diagonal
entries of Eq. (2.9¢) yield

£1l)x = Nii.l’ (2.11)
from which we conclude that we are free to choose
QW =N,=0. (2.12)

Doing so, the off-diagonal elements of Eq. (2.9¢) yield
Qi 4V e x =Nik,1 + 2 Niijk(ajk —aij)’

ALk

(2.13)
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where
a, =lc, —c;)ia, —a;) (2.14)

ifa, #a,,and is otherwise arbitrary. In order for Eq. (2.13) to
represent a three-wave interaction, we must have

Ny =auN}, (2.15)
where the o, are real normalizing coefficients. In order for

the ik th equation to be equivalent to the kith equation, we
must have

for j>k,

ou0; = — oy, for i>j>k (2.16)
Equation (2.13) may now be written
ANy =Ny, + Z UjkNiszj(akj - aij)
J>k>i
+ 2 NyNuley —ay)
k> j>i
+ > ouNENlay — a;). (2.17)
k>i> j

Equation (2.17) was first obtained by Ablowitz and Haber-
man.’

Equation (2.17) possesses, by construction, an infinite
number of constants of the motion, namely the eigenvalues
of Eq. (2.5), and hence may be deemed integrable. The task at
hand is to find under what conditions Eq. (2.2) may be writ-
ten in the form of Eq. (2.17). To do so, we make the following
identifications:

N,, =ib,,

Nl,n+2 =ib,/V2,

N2,n+2 =ib ;/‘/2’

N,=0, I=34,..,N+2 n>l
From the equations for N,,, N,,, and N,, we then find

(2.18)

Ony22@n 2 — Arpy2) =€,y

(@oni2 — )= —€,/2, (2.19)
Oo@nt2 — Q1) =€,/2,
which may be consistently satisfied by the choice
(@ontr2 —Ainy2)= — € (Apnyr —Ap)= —€,/2,
(@2 — A1) = €S2, Opynn= —1, oy=1 (2.20)
Using Eqgs. (2.2) and (2.16), one further deduces
al,n+2 =Y = — 7/:1 = —Qy,,2 =€n/2’
an=%=0 0,,,,=1 (2.21)

Referring now to the equations for N, (/ = 3,...N + 2,n > 1)
in Eq. (2.17), we see that in order to have V,, = O for all time,
i.e., in order to have N,,, = 0, we must have

a, —a; =0, (2.22)
for j < I < n. Setting j = 1, we find from Eq. {2.21)
61 = 62 = e == GN) (223)

so that Eq. (2.2) can be put in the form of Eq. (2.17) only if all
the coupling coefficients are equal.

Setting for convenience €, = €, = - =€y = 2, Eq.
(2.2) takes on the form
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N
bo, =i 3 b,b.%

n=1
b,,=b,, +ibsbh,,
b, =—b,,.+ibkb,.
The quantities a,, a,,...,.ay . , and ¢}, ¢5,...,Cy . , MAY

now be determined. Since ¢, = 0, we find ¢, = c¢,, and using
the relations

(2.24)

¢, — € Cp —C
aln=—a2n=. = ?
I(an - al) l(an - 02)

n=3,.,N+4+2, (2.25)
we conclude

ay=a,=-=ay,., =2 +a)/2 (2.26)
and, letting ¢, = ¢,=c,

C3=C4==Cy,, =IC+ia,—a)/2 (2.27)

The quantities @,, a,, and ¢ are arbitrary, except thata, = a,
is not allowed.
We now have all the information needed to construct D,
Q, and N, and from them the standard Lax pairs, L and A.
Using Eqgs. (2.5) and (2.6) we see that

L=(D"'3, —D'N),

A=(—iD7'Q%, +iD'NQ? + Q™). (2.28)

Given Eq. (2.3), it is easy to see that the eigenvalue equation
Ly =il (2.29)
has at any given time the form of a generalized Hill equation
in which the periodicities need not be commensurable. In the
special case where 4, = 4, = ... = A, Eq. (2.29) simplifies
enormously, becoming an equation with constant coeffi-
cients. In this case, it is well known that the solution of Eq.
{2.29) is completely characterized by the eigenvalues and ei-
genvectors of matrix L, where the operator 19, is removed
from L. We have previously shown that, in this case, the
matrix E, can be used, after some modification, to determine
the constants of the motion and that it can be obtained with-
out resorting to a PDE.® However, in the case where the
frequency mismatches are not zero, Eq. (2.29) is consider-
ably more difficult to analyze, and the method of asymptotic
expansion of the PDE used in Sec. IT appears to be the sim-
plest route to determining the constants of the motion.

The reader will have noted that Eq. (2.23) was a conse-
quence of demanding that any waves not in the restricted
system be zero for all time. Relaxing this restriction, to allow
more waves into the system, will lead us to integrable cases of
a more general system as will be discussed in Sec. IV.

{Il. CONSTANTS OF THE MOTION

In the limit {— o, Eqgs. (2.5) and (2.6) reduce to
b, =itDY, b, =LQ%, (3-1)

which has for its general solution any superposition of the
particular solutions
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1 0
0 1
0| explitax + feyt), | 0| explibax +Gest), (3
0 0

etc. If we now consider the solution of Egs. (2.5) and (2.6) at
large but not infinite {, we find that their solution may be
expressed as’

1
AO(§7x’t)
A\(Ext)

(o)
Xexp[ié’alx +§c,t+fx T(§,x’,t)dx'], {3.3)

By(g.x.t)
1
A\ (5%t )

AylExr)
Xexp[ig‘azx + Geot + Jx T(Ext) dx'],

etc., where each of these quantities may be expanded asymp-
totically in &,

TiExt)= 3 & Txt)

j=0

AGxt)= S ¢ A1) (3.4)

j=1

Bo(g‘,x,t) = i § ”'Bo,j(x,t).

Jj=1

The functional dependence of 7, A, and B,, is, of course,
different in each solution. The integrands inside the expon-
entials of Eq. (3.3) have O as their lower limit, rather than
— oo as was the case in Ref. 9, because T (£,x,f) contains a
portion which is constant in x.

Substituting Eqs. (3.3) and (3.4} into Egs. (2.5) and (2.6),
we will obtain for each solution a nonlinear recursion rela-
tion of the form

P (b,T;(b),A;(b).B, ;(b).x,r) =0, (3.5a)

P,(b,T;(b),A;(b),B, ;(b),x,t}) = ;d; -r T;(b)dx', (3.5b)

whereb = (b, b3,b,,b1,0%,b1*,..,by, by, b%, bF)isthe
set of variables we are considering. P, and P, are polyno-
mial functions of b and its higher derivatives and are there-
fore quasiperiodic in x. Dividing Eq. (3.5b) by x and taking
the limit as x— 0, we find
0=—| lim L
dtlx—» x
which is a conservation law. The T} (b) may be determined
from Eq. (3.5a). It turns out that they are independent of x,
and, hence, just the constants of the motion we are seeking.

) T,(b) dx’}, (3.6)
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We study first the solution

1

Ay .

A, exp(iga,x + ilct +f de’),

. 0

Ay
which, when substituted into Eq. (2.5), yields the recursion
relations

i N
T =ibyA, ; + — A, b, 3.7a
J 04%0,j ‘/2 [;l Lj¥! ( )
i(az_al)AO,j+l _axAO,j - on,j—iTi
i<
535, ——— S b 3.7b
=7 o — 4 " .
ovYj0 ‘/2 1;1 1“2 ( )
i(an+2 _al)An,j+l _axAn,j—zAn,j—in
< j
ib* ib >
=7 Y0 =g Ao 57

We choose for convenience i, — a;) =2 and ilg,, _ ,

— a,) = 1, a choice which is consistent with the constraint
a,,, =(a, + a,)/2. From Eq. (3.7a), we have T,, = 0. Equa-
tions (3.7b) and (3.7¢) start the iteration process, yielding 4, ,

=ib}/2 and A, , = ib*/v2. Substituting these results into
Eq. (3.7a) yields T, and we may repeat the process as many
times as we wish to obtain 7>, T, etc. The first two iterates of
this process are

N
T, = ——;-(bobm S bnb:),

n=1

(3.82)

To=ti| $ (- a.bbx v ozt + o306
(3.8b)
where we have used Eqgs. (2.3) and (2.21) to set
d.br=1iAb* (3.9)
in Eq. (3.8b). Equation (3.8a) is one of the Manley-Rowe

relations for this system, and Eq. (3.8b) is related to the
Hamiltonian (1.1).

We could use our recursion relations to obtain further
constants. However, it is not difficult to show by induction
that the constants obtained in this way are polynomials in

the six combinations
N N
bobg’ Z bnb:’ Z b;b;*,
n=1 n=1

(3.10)

N N
S bbxb, S b3b,br,

n=1 n=1

from which it follows immediately that we cannot obtain the
full complement of necessary constants from just the single
solution B, = 1, A— Oas £~ oo, which we have been consid-
ering.

We now consider the solutions for which B;—» 0,
A;.,— 0,4, = las{— o, wheren = 1,...,N. The recursion
relations become
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T, =(—ib*/V2B, , + (ib;*/V2) 4, ,, (3.11a)
—By, . +d.B,; + ngo,j,,-T,-
=iby Ao ; + (i/V2)b, 8,0 + (i/x/i)lz b, (3.11b)
Zn

Ao + 3 Ay + ;Ao'j_,.T,.

= —ib2B,, + (i/V2b ;0 + (i/x/i)lz bid,,,(3.11c)

Fn

0.4, + Z,A*"f—‘T"

- j(]i/\/?)b ¥B, , + (i/V2bi*4,,; (I #n), (3.11d)

where we haveseta, — a, = a, — a, = 1. Theiteration pro-
ceeds as follows. Using Eqgs. (3.11b) and (3.11c), we find B, ,
=(—i/v2)b, and 4,, = (i/V2)b . Using Eq. (3.11a), we
then immediately find the N constants

T, =4b,b % +b,b ). (3.12)
Moving to Eq. (3.11d), we obtain

Ay = =407 'btb, +b1*b)) {3.13)
which becomes, assuming 4, #4, for/ #n,

A, =[i/4, —4,)]bFb, +b*b ) (3.14)

Using Eqgs. (3.11b) and (3.11c) to obtain 4, , and B,,, and
substituting the result into Eq. (3.11a), we find the & addi-
tional constants

T, = %i‘%d,,b,,b: — LA b b*—byb¥d,

bbbt + S [bbY +bib A, —A,n].

I#n

(3.15)

These N constants when all added together produce a multi-
ple of the Hamiltonian. Hence, of the 2N + 2 constants in
Egs. (3.8), (3.12), and (3.15), only 2N + 1 are independent.
All these constants are in involution, and as a result provide
the full complement of 2N + 1 independent constants in in-
volution needed to demonstrate integrability.

In the case where some of the frequency mismatches are
equal, the constants of Eq. {3.15) become singular, and one
may proceed as follows to obtain N mutually independent,
nonsingular constants, corresponding to those of Eq. (3.15):
Let us suppose we have a set of triads such that
A, =4, ==A4,,=A, where M<N. Let us also designate
the T, corresponding to n, T'5. We obtain one nonsingular
constant by adding all the 7'} (1<n<M) to obtain

M
1W=4i y [%Abnb:—%Ab;b;thb:b:.

n=1

—b3b.6x+ X [lbbX +bib X4 — 4]}
[#1.2,..M

(3.16)

To obtain further nonsingular constants, we set 4,
=A + eu, (1<n<M), where the u,’s are constants, chosen
so that u, #u, for [ #n, but where they are otherwise arbi-
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trary. Substituting these choices of 4, into Eq. (3.15) and
extracting the most singular term in €, we find the M — 1
mutually independent, nonsingular constants

bib% +bib

U, —u,;

I =

! #n,i<M

(2<n<M). (3.17)
We may proceed in this fashion with each set of triads which
have the same frequency mismatch to finally obtain N mutu-
ally independent, nonsingular constants ‘Y, 7@, . T}, Evi-
dently, if 4, #4, for all / %n, I'™ = T'". This set of con-
stants can be verified to be mutually in involution and in
involution with the constants of Egs. (3.8} and (3.12).

IV. INTEGRABLE CASES OF A MORE GENERAL
SYSTEM

In this section, we are interested in systems whose equa-
tions of motion may be written in the form

Nik = — YulNu + ZcijkNiijk: (4.1)
J

where i, j, and k are all integers, i#j#k, N, is one of the
complex wave amplitudes, and y,, and c;; are arbitrary. We
suppose that the wave N, has a wave vector k;, and NV,
=0, N¥, whereo, = + 1,sothatk, = —k;,.

Equation (4.1) is similar to Eq. (2.13). We may obtain an
equation of the form of Eq. (4.1) by demanding that the spa-
tial variation be exponential in Eq. (2.13). That is to say, we
must have

Ny (xt) = Nyt Jexp(d ;i x). (4.2)

The quantity 4,, may be purely imaginary as was the case in
Sec. II, where it corresponded to a frequency mismatch. We
can also imagine cases where it is real, in which case it corre-
sponds to dissipation, or where it is complex, in which case it
corresponds to a combination of a frequency mismatch and
dissipation. In all cases, the consistency condition

4, =4,+4, (4.3)
must be met, and we have 4,, =4 ¥,.

To generate an integrable equation of the same form as Eq.
(4.1), we begin with a case of the restricted system with arbi-
trary coupling coefficients. We recall from Sec. II that we
have assumed a change of variables such that no frequency
mismatch or dissipation exist for the shared wave. In the
former case, that implies going into a moving frame. In the
latter case, that implies a scale change. From Eq. (2.21), we
have

a|2=0s al,n+2 = _a2'5+2 =6,,/2. (4.4)

All the other @; may be chosen arbitrarily. Having chosen
A, =0and 4, ,,, arbitrarily, all the other 4, are fixed by
the consistency condition (4.3). Finally, using Eq. (2.16) as
well as Eqs. (2.20) and (2.21), one finds o;; = — 1, for both i
andj> 2.

It follows immediately that the restricted system with
arbitrary coupling coefficients and mismatches can always
be made integrable by introducing additional waves with ap-
propriate coupling coefficients. Moreover, these coupling
coefficients are to a large degree arbitrary because of the
arbitrariness in the a;; for both j and j > 2.
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It is perhaps worth emphasizing that the existence of
integrable cases for dissipative systems of special parameter
values is not inconsistent with the existence of chaotic solu-
tions and attractors at most parameter values. For example,
the Lorenz system, which is integrable in certain special
cases, also possesses strange attractor solutions.'’

We now consider as an example the two triad case with
frequency mismatches, but no dissipation. In this case, be-
fore any additional waves are introduced, the equations of
motion, obtained from Eq. (2.17) are

le = — €1N13N;3 - 6_21\,]41\1'2"‘4’
Ny = — YA \Ny; + 1€,N Ny,
Nig= — UA,N\y + 16NN, (4.5)

Ny = %iA 1V — e NNy,
Noy = §id )Ny — SN B N,

This system may be made integrable by the addition of just
one more wave, V,,, in which case the equations of motion
become

le = —NN3 —6NuNT,
Njp= — %iAIN13 + %51N12N23 + %(E — 6NN,
Niyy= — AN, + 16NNy — L€ — )N 3N,

Ny =1id\Nps — 16, NN s + 4+ € )NV 3, (4.6)
Ny =34,N,, — SN BN 1y — YE + €)MV,

N34 = %l“é(A 1/61 _— Az/ez)N34
+i{€;, —€NEN, + (6, — INH Ny,
where € is arbitrary.

V. INTEGRATION OF THE EQUATIONS OF MOTION
WHEN ALL COUPLING COEFFICIENTS AND
FREQUENCY MISMATCHES ARE EQUAL

In this section, we show that in the special case where
4,=4,=..=4,=Aand ¢, = ¢, = - = €,=k¢, the inte-
gration of the equation of motion can be reduced to quadra-
tures of elliptic functions. It is rather remarkable that this
result holds true. For while we know that the solution is
meromorphic,’ meromorphic functions are generally ex-
pressible in terms of abelian integrals, of which elliptic inte-
grals are a very special case.

We begin by reviewing the solution to the single-triad
case because we shall need this result. The Hamiltonian is

H=14J, _%AJ{ - E(JIJ{JO)‘/ZCOS(BI — 01 —6,),
5.1)

so that
Jo= — 9H _ eI 1 Jo) 5sin(6, — 6 — 6,). (5.2)
d6,
Combining Eqs. (5.1) and (5.2) and recalling that
Ji=1y—Jy
v=4L—-Jy=1,—1,+J, (5.3)

where [, and 7, are constants of the motion, we find
(H— Al + AL/2 + AT + (Jo)
=€2Jo(10—-]o)(11 =1 + Jy). (5.4)
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This equation may be rewritten in the form

Vol = €(Z, — JNZ, — INZ; — o), (5.5)
where Z, < Z, < Z,, and has the solution

Jolt) = Z3 — (Zy — Z,)sn’[}e(Z; — Z,)"*t — 5|m], (5.6)

where m =(Z, — Z,)/(Z; — Z,) and § is arbitrary.'" It im-
mediately follows from Eq. (5.3) that

Jit) =1y — Zy + (Z; — Z)sn*[4e(Z; — Z))"*t — 8|m},
Jity=— I+ Z,) — (25— Z))

Xsn’[Le(Zy — Z,)"’t — 8|m]. (5.7)
From Eq. (5.1), we also have

By = — (/2 )\ 1 o) *cos(f, — 67 — 6,)
=14+ (H— Al + 41,/2)/2J,, (5.8)

which may be integrated to yield

00(t) = VAt + [(H — Al + A1,/2)/€Z,(Z, — Z )" "]
X1 — Z,/Z334e(Zy — Z,)"*t — 5|m]
—1MI[1 — Z,/Zy; — 8|m]} + 6,,° (5.9)
where 8, is arbitrary. The solutions for 8,(¢ )and € ; (¢ ) may be

found in a similar fashion.
Proceeding now to the many-triad case, we find

Jo=Y €lJ,J ;Jo)*sin(0, — 8, — 6, (5.10a)
H—AL+ 14 ZI,, + 4J,
=Y €lJ.J 1Jo)"*cos(6, — 6, — ), (5.10b)
where ’
(5.11)

L=Jo+3J,, I,=J,+J,

are constants of the motion. Squaring and then combining
Eqgs. (5.10a) and (5.10b), we obtain

Vo= —(H—AL+}A Y I, + 4J,)

+e|aty =S 1~ 1o+ 1) =440 3 7).
n iL“j

(5.12)
where
T2 = (b,b] — bbb ¥b;* —b*b )
= T + ) — 20 T
Xcos(@, —0; — 6, +6]) (5.13)

is a constant of the motion. Equation (5.12) may be written in
the form

(-.]o)2 = 62(21 —JolZy — J)NZ5 — Jo),
which has as its solution

Jo=2Z3—(Zy — Z,)sn’[Le(Z5 — Z)V2t — 8m]. (5.15)
We find similarly

(5.14)
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Bo=1A4+|(H—AL,+14 Y 1,)/eZ,Z; — Z,)'?
XA [1 — Z,/Z536(Z; — Z,)"'*t — 8|m]
— M1 = 2Z,/Z,; — 6|m]} + 6. (5.16)

Hence, the behavior of the shared wave is the same as in the
single-triad case. This fact was first noted by Meiss.*
Using now the equations of motion

b, = liebob |, — 4idb,,

b = lieb*b, + 4iAb (5.17)
to eliminate b ,, we find
b, — (bo/by + 4 )b,
— (§idby/by — J%bob & — 14 )b, =0, (5.18)

which is a complex, linear second-order differential equa-
tion. If we can obtain the general solution to this equation,
we may determine the solution in which we are interested by
imposing the appropriate initial conditions. To obtain the
general solution, we begin by noting that Eq. (5.18)is valid in
the single-triad case, and hence we know the solution in the
case where the initial conditions correspond to a single triad.
Comparing the coefficient of each power of J; in Egs. (5.4)
and (5.12), we find that

H—AI,+ 341, =H—Al,+14 3 1, (5.19a)

14T, —70)=Io(2 I, —Io) —4 ST, (5.19b)
n iJ

i, -T,=2,-3 1, (5.19¢)

where the barred quantities indicate the values that the con-
stants of the motion would have to have in a single-triad
system in order for the time behavior of the shared wave to be
the same as in the many-triad system. Evidently, one must
also have § = § and 8, = &,. As a result, the particular solu-
tion of Eq. (5.18) corresponding to single-triad motion is de-
termined to within a phase. [We note that Eq. (5.19a) is con-
sistent with the requirement that Eqgs. (5.9) and (5.16) have
the same time behavior.]

We will label the particular solution of Eq. (5.18) which
we have just identified g, and the general solution v, ¢q,,. Sub-
stituting v, 4, into Eq. (5.18), we find

b, +(24,/9, — bo/bo + Lid )i, = 0. (5.20)
Integrating Eq. (5.21) twice, we find
v, =af b—;’exp(—gmt')dz'+5, (5.21)
o4y

where a and f3 are arbitrary complex constants. The general
solution may now be written

b, = aq, f b—;’ exp( — Yidt')dt' + fg,. (5.22)
o q,

We may evidently determine b, in a precisely analo-
gous manner which completes our demonstration.
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VL. SUMMARY

This paper is the second in a series of papers discussing
restricted multiple three-wave interactions. This system ap-
pears to be the simplest possible multiply interacting three-
wave system involving an arbitrarily large number of waves
and, as such, provides a useful platform from which to study
aspects of more general interactions. In this paper, we show
that a special case of the restricted system, namely that in
which all coupling coefficients are equal, is integrable for
arbitrary frequency mismatches. We then use the restricted
system as a springboard from which to generate integrable
cases for a more general class of three-wave systems.
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Parametrizing a planar homogeneous Lorentz transformation P by any timelike or spacelike
vector b lying in the transformation plane and its transform a=Pb yields a dyadic expression for P
with several advantages: It provides an immediate solution to the problem of finding a
homogeneous Lorentz transformation converting a given timelike or spacelike vector into a
second similar vector. Its manifestly covariant, coordinate-free form is valid in any Lorentz frame
and reduces easily to coordinate form. It unifies timelike (including boosts), spacelike (including
pure spatial rotations), and null planar transformations and also orthochronous and
nonorthochronous planar transformations into a single form; these classifications depend on the
vectors @ and b. Only ifa = — b does the expression fail, but then its limit as a— — b still exists

and provides a valid expression for P.

PACS numbers: 03.30. + p

I. INTRODUCTION

This paper discusses the properties of a simple expres-
sion for planar homogeneous Lorentz transformations, in-
cluding pure Lorentz transformations (boosts) and pure spa-
tial rotations' as special cases, which has several convenient
features. Its manifestly covariant and coordinate-free form
makes it valid in any Lorentz frame, and its matrix elements
are easily found in any Lorentz frame. It unifies timelike,
null, and spacelike planar transformations and also orthoch-
ronous and nonorthochronous planar transformations into a
single form; other approaches require different forms for the
different classifications.' It provides an immediate solu-
tion to the problem of finding a planar transformation P
converting a given timelike or spacelike vector & into a sec-
ond similar vector a=Pb, because it parametrizes Pin terms
of just twosuch vectors. Only ifa = — b does the expression
fail, but then its limit as a— — b still exists and provides a
valid expression for P.

In special relativity a planar transformation is a proper
homogeneous Lorentz transformation which, under the ac-
tive interpretation, changes 4-vectors lying in some 2-flat
through the origin into new vectors in the same 2-flat and
which leaves vectors in the orthogonal 2-flat unchanged. A
2-flat is a two-dimensional plane in flat spacetime and is
timelike if it intersects the null cone along two null lines, null
if it lies tangent to the null cone along a single null line, and
spacelike if it neither touches nor intersects the null cone.
Planar transformations are timelike (including boosts), null,
or spacelike (including pure spatial rotations, hereafter sim-
ply called rotations) according to the classification of their
transformation 2-flat.>¢

The next section gives the notation and reviews the pro-
perties of a manifestly covariant expression for reflections.’
The third section uses these properties to provide a simple
proof that the expression for planar transformations is al-
ways a proper homogeneous Lorentz transformation, der-
ives conditions on the vectors a and b for all possible classifi-
cations of planar transformations, discusses the properties of
the expression obtained in the limit a— — b, and shows that
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these expressions are adequate for representing any planar
homogeneous Lorentz transformation. The final section
gives several other expressions.

Il. HOMOGENEOUS LORENTZ TRANSFORMATIONS
AND REFLECTIONS

Relative to any Lorentz frame a (4-) vector x has compo-
nents x* = (x° x’), where Greek indicies run from O for the
temporal component to 3 and Latin indices run only from 1
to 3 for the spatial components. The scalar product of two
vectors is x-y=x"y, = g, x"y", where repeated indices are
summed and the metric tensorghasg” = — g% =1,g*"=0
for 5 v in all Lorentz frames. A vector x is timelike if
x-x < 0, spacelike if x-x > 0, null if x-x = 0and x#0, and zero
ifx=0.

Under the active interpretation, a homogeneous Lor-
entz transformation, abbreviated HLT and symbolized by
the letters H and G, is a linear transformation of vectors x
into new vectors x’ = Hx conserving the scalar product:
x'.y' = x-p. The elements H*,, of H relative to a Lorentz
frame convert the components of x into those of x’ both
relative to the given Lorentz frame via

x'*=H* x". (1)
These elements are real and are subject to the orthogonality
conditions

Hﬂa Hva = g#'V = &‘

v

(2)

which are equivalent to the requirement that the scalar pro-
duct be invariant. Equation (2) implies

|H |=det||H",|| = £ 1 (3)
and

(H%)* =1+ (H")>1. (4)
An HLT is proper if |[H | = 1, improper if |H | = — 1;itis

orthochronous if H %> 1, nonorthochronous if H %< — 1.
It follows from the definition that the product HG rep-

resenting the application of two HLT in succession with G

first is also an HLT and that every H has an inverse H '
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which is an HLT. According to Eq. (2), its matrix elements
are

H-'" =HH" (5)
Similarity transformations H' = GHG ~' yield new HLT
with |H'| = |H |and TrtH’' = TrH, where TtH =H"* ,. (If G
is interpreted passively, then x* = G*, x* and H*,
= G“'#H # G ~ 1, give the components of x and the ele-
ments of H relative to a new Lorentz frame.)

The simplest HLT is the identity transformation E with
Ex = x for all x; it satisfies the invariant scalar product con-
dition trivially. In any Lorentz frame the elements of E are
E#, =g"* =& and hence one has |E | =1, TrE = 4, and
E°, = 1. This is equivalent to the dyadic expression

E=g"%,e, (6)
where e, is a tetrad of orthonormal basis vectors and the
subscript x on e, indicates which basis vector, not which
component. However, E is independent of any choice of ba-
sis or reference frame, and it will be regarded as a well-de-
fined object requiring no dyadic decomposition.

For any vector b such that 4-b #0, the dyadic’

I=I{b}=FE—2bb/bb (7)
reflects vectors parallel to b through the origin and leaves
unchanged vectors orthogonal to b

Ix =x —2bx b/bb,

= —x for x=4¢b,

=x for bx=0. (8)
It is an HLT because it is linear and preserves scalar pro-
ducts

X'y =(x—2bx b/bb)y—2by b/bb)

=Xx-y.
Alternatively, one may use the component form
I#, =gt —2b%b, /bb (9)

to check Eq. (2). Substituting Eq. (9) into the definition for
the determinant of 7#, yields
[ |=€agysd "l /I 1% = — 1, (10)

where €4, is the completely antisymmetric Levi-Civita ten-
sor with €;,,; = 1. Other properties following from Egs. (7)
or (9) are

Iw =1 (11)

Tl =I*, =2, (12)

I{¢b}=1I{b} for ¢ #0, (13)

I’=II=E, (14)
and

GI{b}G~'=1{Gb}]. (15)
Ifa-a = b-b #a-b, one has (a — b )-(a — b)#0 and

I{a—bla=2»,

Ifa—blb=a. (16)

Relative to any Lorentz frame, Eq. (9) gives
I% =1+ 2(b%?%/b-b. If b is timelike, then & ‘b, >0 implies
b-b> — (b°? and (b °*/b-b< — 1 s0 that I°,< — 1; one has
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I°,= —1lifandonlyifb‘=0.Ifbisspacelike, it is obvious
that 7°,>1and that 7° = lifand only if 6 ® = 0. If b is null,
I{b} does not exist.

Ili. PLANAR HOMOGENEOUS LORENTZ
TRANSFORMATIONS

A 2-flat F through the origin consists of all vectors
x = aa + Bb, where a and b are any two linearly indepen-
dent vectors in .¥ and a and 3 are variable scalars.? A time-
like # intersects the null cone along two null lines and has
A =(a-b)* — a-ab-b>0;anull.¥ touches the null cone along
asingle null lineand has A = 0; a spacelike .# does not touch
or intersect the null cone and has A < 0. These classifications
are invariant under any new choice of basis a’ = a,a + 5,b,
b’ =a,a + B,bin ¥ aslongasa,B, — a,f3,#0, which guar-
antees that o' and b ' are linearly independent.® A 2-flat ¥
through the origin has a unique orthogonal 2-flat % * con-
sisting of all spacetime vectors which are orthogonal to every
vector in F . If ¥ is timelike (spacelike), then 7 * is space-
like (timelike); if .# is null, then .# * is null and contains the
same null line as & .

Planar transformations are proper HLT which convert
vectors in some 2-flat & through the origin into new vectors
in F and leave vectors in the orthogonal 2-flat invariant.?
Common examples are rotations R and pure Lorentz trans-
formations L (boosts). Rewriting the usual formulae for the
matrix elements of a boost

L 00 =%

Lo =Ly= —yV}

L =68+ y—-1WV/v?
where Vis an ordinary 3-velocity with magnitude ¥ less than
the speed of light ¢ = 1and y=(1 — V%)~ "/, yields the man-
ifestly covariant expression

L¥, =g*, =2nv, + (n* + v¥)n, +v,)/(1 — nw),
where n*=(1; 0,0,0) and v*=(y; y¥").® The corresponding
dyadic form

L=E—-2nv+(n+v)n+v)/(l —nv (17)
generalizes to

P=Plab}=E+2ab/aa—(a+bla+b)

(@a+ab), (18)

where a and b are linearly independent vectors such that
a-a = b-b #0and a-a + a-b #0. The last inequality guaran-
tees that neither @ + b nor (1 + 2 a-b /a-a)a — b is null or
zero; hence I {a}, I{b}, I{a+b},andI{(l +2ab/
a-aja — b } exist. One may check directly by substitution into
Eq. (7) that
Plab} =I{all{a+ b}
=I{a+biI{b}
=TI{(1+2a-b/aa)a—b}I{a}. (19)
Since I is an HLT, it follows from the first of these equalities
and from Eq.(10) that Pis an HLT and that |P| = 1.
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By Eq. (18), P produces the transformations

Pb=a,

Pa = (2a-b /a-a)a — b, (20)

Px=x for ax=bx=0.
Hence P is always a planar transformation in the two-flat %
through the origin determined by b and a = Pb. It is a time-
like transformation 7, a null transformation ¥, or a space-
like transformation S according to the classifications of %
determined by A = (a-b)* — (a-a)>. Ifa = nand b = v, where
vv= — 1, Eq. (18) reduces back to Eq. (17) for a boost

L {v)=P{nyvj. {21)
This is orthochronous if v°> 1 and nonorthochronous if
< — 1. Sincevv = — 1, L {v} has three essential param-

eters. If ° = b = 0, Eq. (18) reduces to a rotation R.

One of the advantages of Eq.(18) is that it provides a
single form for timelike, null, and spacelike planar transfor-
mations and for orthochronous and nonorthochronous
planar transformations. Other approaches require different
forms for the different classifications.'~ A second advantage
is that, according to Eq. (20), it provides a simple solution to
the problem of constructing an HLT converting a given ti-
melike or spacelike vector b into a second, linearly indepen-
dent, given vector a, where a-a = b-b. (If a-a = b-b #a-b,

such that b '.b '#0 has the transform

a'=Pb' =ca,a + 3,b, (23)
where a, = 2a,a-b /a-a + B, and B, = — a, by Eq. (20).
They obey

a-a =b"b"#£0,

a-a +da-b’'=b"b" (aa+ ab)/aa#0,
and

a3, ~afs, =b"b’'/a-a0.

The last equation shows that @’ and b ' are linearly indepen-
dent. Hence P {a’, b’} exists, and substituting Eqgs. (22) and
(23) into Eq. (18) shows

Pla,b'} =Plab}. (24)

From this and Eq. (21) it follows that if » lies in the transfor-
mation 2-flat of a planar transformation P, then P is a boost.
Also, the condition a-a = b-b and the arbitrariness of @, and
B, in Eq. (22) imply that only five of the total of eight com-
ponents of @ and b are essential parameters.

The following properties of P follow directly from Eq.
{18):

P{¢agb} =Plab} for @0, (25)
P~'{ab}=P{ba)=P{a2ab a/aa—b}, (26)

then by Eq. (16).the'1mpr.opertransformathnl {a — b} does [P? —2(a-b/aa)P + E][P— E]=0, (27)
the same. Multiplying either of these solutions by transfor- ,
; : : . . : GP{ab}G ' =P{Ga,Gb ], (28)
mations leaving @ invariant yields other solutions.)
Any vector b’ in .¥ TrP=P*, =2l +a-b/a-a), {29)
b’ =a,a+ Brb (22) Tr(P? = [TtP — 2]2 = 4{a-b /a-a). (30)
TABLE 1. Planar homogeneous Lorentz transformations.
Classification Symbol Yy=ab /aa H*, HS,
Orthochronous timelike T%>¢
T S B N I N
Boost L L% =¢
I
Nuil N N >¢
=1 P, =4 -
Identity (@ = b) E E°% =1
Spacelike s 5%>1
- = - - S —l< ¥y <l O<Pt <4 |- - - - - - - - - -
, Rotation R R% =1
spacelike 7°%>1
- - == = - - - - - - - - - - -
, rotation m’ =1
Exceptional ; n Y= —1 m, =0
la= —b) nonorthochronous boost e, = —
Lo o - L - B
nonorthochronous timelike m%< —1
'nonorthochronous boost Lo =14
T R S - - - - - = - - -
Y< 1 P#, <0
Nonorthochronous timelike T T <y
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For the special case (a-b )* — (a-a)*#0, the reflections
I{a—b}andI{a—abb/aa} exist and one has

Plab}=1I{a—b}I{a—ab b/aa} (31)

by Egs. (7) and (18).
Relative to any given Lorentz frame, Eq. (18) yields

P% =1+17/8, (32)
where
b=a-ala-a + a-b)#0 (33)
and
7 =a-al@® + b°? — 2{a-a + a-b)a’h°
— |a% — b°a[250, (34)

and a and b are the spatial parts of @ and 4. The condition
7 = 0 holds if and only if a’b = b %a, which is equivalent to
a°b = b %a. However, a and b must be linearly independent,
and therefore 77 = Oholdsif and only ifa® = ° = Oand Pisa
rotation R. Equations {33), (34), and the three-dimensional
Schwarz inequality yield

26 +n=(aa+ab) + |a]’[b]* — (ab)?
>(@a+ab)>0. (35)

Theequality25 + 7 = (a-a + a-b)*holdsifandonlyifa = b,
a=0,orb=0,i.e, if and only if ¥ contains the temporal
axis so that Pis a boost L.

A timelike planar transformation 7= P {a,b ] has
(@-b)* > (a-a)*>0.Henceeithera-b /a-a>lorab/aa< — 1
must hold. In the first case Eq. (29) yields Tr7 > 4, Eq. (33)
yields 8 > 0, and Eqs. (32) and (35) yield T%>a-b /a-a> 10
that T is orthochronous. If in addition T'°, = a-b /a-a, one
has 26 + 7 = (a-a + a-b )* and T is an orthochronous boost.
The vectors a and b may be both timelike or both spacelike; if
they are timelike, then they are both future pointing or both
past pointing. In the second case Eq. (29) yields TrT <0, and
Eq. (33) yields § < 0. It then follows from Egs. (32) and (35)
that T%<a-b /a-a < — 1sothat Tisnonorthochronous. The
additional condition T'°) = a-b /a-anow holdsifand onlyif T
is a nonorthochronous boost. If @ and b are timelike, one is
future pointing and the other is past pointing.

A spacelike planar transformation S = P {a,b } has
(@-b)* < (a-a)® and also a-a > 0, since a spacelike 2-flat con-
tains only spacelike vectors. It follows that — 1 <a-b/

a-a <1, that 0 < TrS < 4, that § > 0, and that §°>1. Also,
$% = 1 holds if and only if = 0, i.e., ifand only if S is a
rotation R by the discussion following Eq. (34).

A null planar transformation N = P {a,b } has
(a-b )* = (a-a)?, which reduces to a-b = a-a >0 because
a-a + a-b #0 and because a null 2-flat contains no timelike
vectors. Hence one has TrN = 4, 7> 0, § = 2(a-a)* >0, and
N°>a-b/a-a = 1. The last result distinguishes N from E,
which has E °; = 1. Table I summarizes the classifications of
planar transformations.

The classifications of a given P {a,b ] astimelike, null, or
spacelike and as orthochronous or nonorthochronous de-
pend only on scalar products involving a and b. It therefore
follows from Eq. (28) and the invariance of scalar products
that these classifications are invariant under similarity trans-
formations. However, for a timelike transformation
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T=P {a,b} with a and b given, one may pick any timelike
unit vector vy in the transformation 2-flat # and define v,
=Tug to obtain

L,TL,~'=L,P{v,vs}L, ' =L [v} (36)

via Egs. (24), (28), (20), and (21), where L, =L {v,} and
v=L ,vy. It also follows from Eq. (29) and the invariance of
the trace under similarity transformations that

y=1° = n-v/n-n =a-b/aa. (37)
This construction fails if v, = + n, but then 7T is already a
boost. Thus a similarity transformation by a boost suffices
for changing a timelike transformation into a boost.

Similarly, aspacelike transformation S =P {a,b } witha
and b given has a timelike pointwise invariant 2-flat % *
from which one may pick any timelike unit vector v and
construct L =L {v} by Eq. (21). Then Eq. (28) implies

S'=LSL '=Plab'}, (38)
where a'=La and b '=Lb, and Eq. (20) yields
S'n=LSL ~'Lv=LSv=Lv=n. (39)

It follows that .S ' is a rotation, that a’ and 4 ' are pure spatial
vectors because Egs. (39) and (20) implya’.n = b'-n = 0, and
that the angle of rotation ¢ of R =S has

cosp =a’-b'/a’-a' =a-b/aa. (40)
The ambiguity in ¢ due to cos¢ = cos(27m — ¢ ) corresponds
to the ambiguity in the direction in which 4 ' rotates into @’

If b and a are linearly dependent so that a = ¢b, then
the condition @¢-a = b-b implies a = + b. Although the de-
finition of P in Eq. (18) requires that b and a be linearly
independent so as to define a 2-flat, the case @ = b causes no
difficulty because P simply reduces to E. The second possi-
bility a = — b violates the condition a-a + a-b #0 and
makes Eq. (18) indeterminate, but it still has a meaningful
limit fora— — bifa and b determine a spacelike or timelike
2-flat. Given (a-b )* — (a-a)*#0and a# — b, express the vec-
tor a as a linear combination of b and any fixed vector ¢
which is linearly independent of b and which lies in the 2-flat
determined by @ and b:

a=pb+ yc. (41)
The condition a-a = b-b and the desired limit a— — b as
y—0 require

B= —1—vybc/bb (42)
to first order in y. Substituting Eqgs. (41) and (42) into Eq. (18)
gives

IT{ch}=lim[P{ab]}]

y—0

= E + 2[b-bcc — b-c(bc + ¢b)

+ ccbb )/[(b-c)* — b-be-c], (43)
where (b-c)* — b-bc-c#0 because b and c still determine the
original timelike or spacelike 2-flat.

Consider the dyadic expression for /7 in Eq. (43) for any
two vectors b and ¢, including null vectors, such that
(b-c)* — b-bc-c #0. This inequality implies that  and ¢ must
be linearly independent, nonzero vectors determining a ti-
melike or spacelike 2-flat .#. The substitution of

d=y,c+ Bb, e=y,c+ b, (44)
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where y,8, — 753,50 so that d and e are linearly indepen-
dent and (d-¢)* — d-d e-e#0, into Eq. (43) yields

I=MH{cb} =1I{de}. (45)
Hence, if ¢ is null, it is always possible to reparametrize 17
with vectors d and e, where d-d #0. Then the vector e — e-d
d /d-d exists, is orthogonal tod, and is not null or zero. Hence
I{d}and] (e — e-dd/d-d} exist, and one may check that

IN=10M{de}=I{d}I{e—ed d/dd)} (46)
by Egs. (7)and {43). It follows that /T is a proper HLT. By Eq.
(43), it produces the transformations

b= —b, IIe= —¢

(47)

IIx=x for bx=cx=0.
Hence I7 is a planar transformation reversing the direction
of all vectors in the two-flat # determined by b and c. Equa-
tions (44) and (45) imply that I7 { b,c} has only four essential
parameters.

Equation (43) implies the following relations:

Mch)=1{bc} =1 "{bc}, (48)
H{yepb}=M{ch} for y#0, B#0, (49)
IT*—E=0, (50)
GIl {¢,b}G~'=1IT{Gc,Gb}, (51)
=, (52)
Trll =0, (53)
Tr(I1?) = (Trll — 2)* = 4, (54)
and
Mich}l{de} = —E, (55)

where d and e are orthogonal to ¢ and b. For a-a#0 and
¢.¢#0, one has

I{a}l{c} =Pla2ac c/cc—a} for ac#0 (56)
=I{ac] for ac=0 (57)

by Egs. (7), (18), and (43). If a-a = b-b #0 and
(@b ) — (a-a)*#0, then Egs. (18) and (43) give

Plaby=MH{a,b}P{—ab]=Pla,—b}l{ab}.
(58)
Under the same conditions, Eqs. (58) and (55) imply
—Plab}=II{de}P{—ab]}, (59)

where d and e are orthogonal to ¢ and b.
Relative to any Lorentz frame, Eq. (43) gives

o, =1-2y/8, (60)
where
S=(b-c)? — bb c-c#0 (61)
and
p=b-b (c°)> — 2b-cb °c® + c-c(b )
= | — b°|>0. (62)

As before, one has 7 = 0if and only if b and ¢ are pure spatial
vectors. The Schwarz inequality provides

7 — 6 = [b*|e|* — (bc)*>0, (63)
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where the equality holds if and only if the transformation
plane contains n. The condition > 0 that the transforma-
tion plane be timelike thus implies I7 %< —1,and
IT°, = — limpliesthat the transformation plane contains n.
The condition § < O for a spacelike plane implies I7°,> 1, and
IT°, = 1 implies that the transformation is a rotation by 7
radians. Table I also includes these classifications.

Suppose that H is an HLT possessing at least a
pointwise invariant 2-flat % * through the origin; then one of
the following constructions expresses H as E, P, or /7 if

|H|=1orasIif |[H|= — 1. These constructions use the
simple results
Hr=r and rb=0 imply »{Hb) =0, (64)

because r-(Hb) = (H ~'r)-b = r-b =0, and
Hb=¢b and bb #0 imply ¢= +1, (65)

because (Hb ){Hb) = b-b.

Case I: Let ¥ * be timelike or spacelike and pick any
two linearly independent vectors x and y in % *. If at least
one of them, say x, is not null, define

r=x, s=y—xyx/xx;

if both are null, define

r=x+y, s=x-jy.

Then r and s are linearly independent, orthogonal, timelike
or spacelike vectors in ¥ * with Hr = r and Hs = 5. Similar-
ly, construct two linearly independent, orthogonal, timelike
or spacelike vectors b and cin ., the timelike or spacelike 2-
flat orthogonal to .% *. If Hb is linearly dependent on b, Eq.
(65) gives Hb = + b; otherwise, Hb is linearly independent
of b.

Subcase A: Let Hb = b. Since b, c, r, and s are ortho-
gonal and not null, they form a basis. Hence Eq. (64) implies
Hc = ¢c, where ¢ = + 1 by Eq. (65), and one has either
H=EorH=1I{c}.

Subcase B:Let Hb = — banddefine H '=I {b | H.Then
H'’ satisfies the conditions for Subcase A by Eq. (8), and it
follows that H' = E and H = I {5 } by Eq. (14) or that
H'=1I{cland H=1I{b} I{c} =1I{bc} byEq.(57).

Subcase C: Let a=Hb be linearly independent of b.
Then one has a-a = b-b #0 and also (a-b )* — (a-a)*#0, be-
cause a is in # by Eq. (64) and ¥ is not null. It follows that
a-a + a-b #0andthat P {a,b | exists. Forcusec=a — a-bb /
b-b, which exists in .% , is not null because
c-¢c = [(@-a)* — (a-b)*]/a-a#0, and is orthogonal to b. Then
H'=P ~'{a,b | H satisfies the conditions for Subcase A by
Eq.(20),andonehas H' = Eorl {a — a-bb /b-b }. It follows
that either H =P {a,b}or H=Plab}I{a—abb/
bb} =1I{a—b}byEq.(31).

Case 2: Let F * be a null 2-flat and pick from it any two
linearly independent vectors x and y; hence they must satisfy
(x-y)? — x-y y-y = 0. This equation and the fact that x-y7#0
for two linearly independent null vectors imply that x and y
cannot both be null. Hence at least one of them, say x, is not
null. Define the vectors

Z=y — Xy X/X-X, r=x — nx z/nz.
Then z exists in % *, is null, and is orthogonal to x; conse-
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quently, 7 exists in ¥ * and is a spacelike vector orthogonal
to n and z. It also follows that Hz = z and Hr = r. The 2-flat
Z orthogonal to 7 * is null and also contains z, and one can
similarly construct a spacelike vector b in # which is ortho-
gonal to n, z, and ». Then the vectors n, z, b, and r are linearly
independent and form a basis for spacetime. As in Case 1,
one has Hb = + b or else Hb is linearly independent of b.
Subcase A: Let Hb = b. Equation (64) implies that

Hn=wvn+§z+ pb+ pr
has 8 = p = 0. Then z-n = (Hz){Hn) = z:(Hn) = vz-n yields
v=1,and — 1 = (Hn)-{(Hn) = (n + {z)-(n + £2) yields
{=0.Henceonehas Hn =nand H=FE.

Subcase B:Let Hb = — banddefine H '=I {b } H. Then
H ' satisfies the conditions of Subcase A by Eq. (8), and it
follows that H' = Eand H=1{b}.

Subcase C: Let a=Hb be linearly independent of b. If
a-a + a-b #0, then P {a,b } exists, H'=P ~'{a,b } H must
equal E by Eq. (20) and subcase A, and H = P {a,b }. If
aa+ab=0,onehas (a—b)a—b)=4aa=4b-b #0.
Hencel {a — b } exists,H '=I {a — b } Hmustequal Eby Eq.
(16) and Subcase A, and H = I {a — b }. This completes the
constructions.

IV. OTHER EXPRESSIONS FOR PLANAR
TRANSFORMATIONS

Although the forms for P and /7 given by Egs. (18) and
(43) are together sufficient for expressing any planar HLT,
other forms are sometimes useful. For example, if
a-a = b-b #0 and (a-b )’ #(a-a)?, define

a=a-b /a-a + [(a-b /a-a) — 1]*/?,

z,=aa — b,
and

z,=a/a—b (66)
sothat a#0 or 4 1 and z,-z, = z,.z, = 0. Hence z, and z,
are linearly independent null vectors, and Eq. (66} is inverta-
ble:

a=(z,+z)la—a?)

b=(a 'z; + az,)/(a —a”}). (67)
Substituting these results into Eq. (18) yields

Plab) =E+[la—1)z,2, + (@' — 1)2,2,)/2,2, (68)
with

Pz, =az,, Pz,=2z/a. (69)

If P {a,b } is timelike, then @, z,, and z, are real. If P {a,b } is
spacelike, one has aa* = 1 and z, = z,*, where * here de-
notes complex conjugation.

Alternatively, one can express P {a,b } in terms of z, and
b using Eq. (66). This is most useful for null P {a,b }, which
have a-b = a-a so that Eq. (66) yields

a=1,

z=z,=2z,=aq— b,
and

zz=za=2zb=0. (70)
Eliminating a from Eq. (18) yields
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N=P{a,b} =E + (2zb — 2bz — zz)/2b-b, (71)
with
Nz=z, Nb=b+z (72)

The antisymmetric part of Eq. (18) for P {a,b } is the
bivector

A=(P{ab} — P{ba})2

= (ab — ba)/a-a. (73)
Noting that
A? = [a-b(ab + ba) — a-alaa + bb)}/(a-a)* (74)
and
Tr(4 %) = 2[(a-b /a-a)* — 1], (75)

one obtains from Eq.(18)
Plab)=E+A+A%/{1 +[1+Trd?/2]'?}. (76)

Thus the statement’® that the antisymmetric part of P deter-
mines P is not quite correct because of the ambiguous sign in
the denominator of the third term of this equation. The am-
biguity is due to the fact that P {a,b } and P { — b,a], whenit
exists, have the same antisymmetric bivector 4; for example,
a rotation by ¢ radians about the z axis has the same 4 as a
rotation by 7 — ¢ radians about the z axis [i.e., sing

= sin(7 — ¢ )]. According to Eq.(75), P is spacelike for
Tr(4 ?) < 0; then the positive sign in Eq. (76) corresponds to
0 < ¢<7/2 and the negative sign to 7/2 < ¢ <, where ¢ is
given by Eq. (40). The transformation P is timelike for
Tr(4 %) > 0, and it is orthochronous for the positive sign and
nonorthochronous for the negative sign. For Tr(4 %) = 0, the
transformation is null and exists only for the positive sign.
Equation (76) differs from the various expressions given by
Bazanski® and by Rao, Saroja, and Rao® in that 4 is con-
structed from a pair of unnormalized and nonorthogonal
vectors rather than from an orthonormal pair. As a result, it
contains no extra scalar paremeter for the angle or pseudo-
angle of the transformation and it is able to represent all
three classifications of planar transformations.

Fora = + b, one has 4 = 0 and Eq. (74) yields P=E
for the positive sign and is indeterminant for the negative
sign, exactly as for Eq. (18). The singularity may again be
removed by taking the limit a— — b on a timelike or space-
like 2-flat. This yields

IT=E —A%Tr(4?), (77)

where 4 =cb — bc and c and b are linearly independent vec-
torsin the 2-flat. Rao, Saroja, and Rao® give a similar expres-
sion for the spacelike case only.

V. CONCLUSIONS

It has been shown that the dyadic P {a,b | defined in Eq.
(18) and its limit /7 {¢,b } as a— — b given by Eq. (43) are
always planar transformations and that they are sufficient
for representing any planar transformation regardless of its
classification as timelike, null, or spacelike or as orthochron-
ous or nonorthochronous. These classifications depend only
on the vectors @ and b or ¢ and b as summarized in Table I.
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Rao, Saroja, and Rao® prove that the equation
TrH=1+£/2,

where £ is the sum of all principal minors of second order of
H, is a necessary and sufficient condition for a proper orth-
ochronous HLT to be planar. Equations (30) and (54) give a
slightly simpler form of this condition

Tr(H?) = (TrH — 2)

and show that it is a necessary condition for nonorthochron-
ous proper planar transformations as well. A future article
will discuss its sufficiency and provide methods for decom-
posing an arbitrary HLT, including improper and nonorth-
ochronous HLT, into the product of various pairs of planar
transformations or reflections.
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The definition of the total nonabelian charge (“color”) in a classical Yang-Mills theory is shown
to require a careful analysis of the boundary conditions at infinity imposed on the potentials and
on gauge transformations. The color current of a nonabelian plane wave is found to be different
from zero in the transverse gauge, though it vanishes in the null gauge. The color charge of a single
pole, described by the Liénard—Wiechert potentials, is constant by virtue of the Yang-Mills
equations. An approximate computation indicates that the total color charge of a system of
particles may change in time, as a result of radiation. To make this result meaningful, it is
necessary to find a method of fixing the allowed gauge transformations to those having a

direction-independent limit at infinity.

PACS numbers: 03.50.Kk

|. INTRODUCTION

In a classical gauge theory of the Yang—Mills type,
sources of the field have a nonabelian charge density. More
precisely, the sources are described by a 3-formj with values
in the Lie algebra of the structure {gauge) group. If the group
is nonabelian, the current j does not, by itself; satisfy a differ-
ential conservation law; it has to be supplemented by another
current i constructed out of quantities referring only to the
gauge configuration. The latter current may be interpreted
as representing the density of the nonabelian charges resid-
ing in the gauge field itself. We use the name “color” for this
nonabelian charge, but our considerations have little, if any-
thing, to do with chromodynamics. Our nonabelian charges
may equally well be associated with “flavors” and, in parti-
cular, the charges occurring in gauge theories of weak inter-
actions.

One expects that, upon integration of / + j over a space
region (2, it should be possible to find its total color content.
By means of the Gauss law, the total color is represented as
the flux, across the boundary of £2, of the Lie-algebra-valued
electric field. The problems considered in this paper are the
following: What is the dependence of the total color on the
choice of gauge? Can the total nonabelian charge of a system
of particles change in time, as a result of radiation? Both
these problems have analogs in Einstein’s theory of gravita-
tion. The question of color radiation is analogous to that of
gravitational radiation. From this point of view, the Yang—
Mills theory may be considered as a simplified model of gen-
eral relativity.

The nature of the difficulties one encounters when try-
ing to define total color, even in the static case, can be seen as
follows. Consider a gauge potential 4, function of the spheri-
cal coordinates r,0,¢. For an isolated system, one expects
that, at large distances,

A=0(r""Y (1.1)
and the corresponding electric field E is of order O (r—2). If 4
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is replaced by its gauge transform 4’ = S ~'4S + .5 ~'dS,
then E changes into E' =S ~'ES. A gauge transformation
function S satisfying

Srop)=alp)ll+0(r~")] (1.2)

is compatible with (1.1) because 4 ' = a " 'da + a~'da
+ O(r~% and a~'da = O (r~ ). This transformation, how-
ever, induces such a change in E,

E’' =a(6,p) 'Eal,p)+ O(r ) (1.3)

that the flux of £ ' bears no simple relation to that of E. In the
theory of general relativity, a similar problem occurs, but is
not as acute as in the case of the Yang—Mills theory.! In
Einstein’s theory, the coefficients I” of a linear connection
constitute an analog of A: they transform under changes of
the local frames in a manner similar to 4. There is also an
important difference: the Yang—Mills equations contain sec-
ond derivatives of 4, whereas I" appears in Einstein’s equa-
tions differentiated only once. As a result, for a static config-
uration, I" falls off faster, I" = O(r~?), and an arbitrary
function @ occurring in (1.2) is not allowed here.

Presumably, the arbitrary function a can be eliminated
by a more detailed analysis of the gauge potentials. For ex-
ample, if it can be shown that the 1/r part of a static potential
is spherically symmetric, then one can restrict a by requiring
that the spherical symmetry be explicit.

In this paper, we leave aside the question of how the
direction-dependent gauge transformation can be eliminat-
ed and concentrate on the study of the dynamics of Yang-
Mills fields in the wave zone. The purpose of the work is to
determine the rate of change of a “retarded” total color
charge. We use an asymptotic expansion method developed
for the study of gravitational radiation by Bondi, et al.2 and
Sachs.” The method has also been used in the context of the
Yang-Mills theory to prove peeling-off theorems for gauge
fields.*

Il. NOTATIONS®

All gauge configurations considered here are defined on
the Minkowski space R* with its standard metric
8.y dx*dx” =dt? — dx* — dy* — dz* and orientation given
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by the volume 4-form dt Adx Ady Adz. A Lie group G is
assumed to be the structure (gauge) group of the theory and g
denotes its Lie algebra. A gauge potential 4 is a g-valued 1-
form on R*,

A=A,e, dx", (2.1)
where (e;) is a linear basis in g. The field strengths are
F=dA +1[4,A] =}F, e dx"Adx" (2.2)

The four-dimensional Hodge dual of Fis denoted by F
If Fis represented in terms of its electric and magnetic com-
ponents,

F=dt N\ (E, dx + E, dy + E, d2)
—B,dy Ndz—B,dz \ dx — B, dx A\ dy,(2.3)
then
F'——EX dy Ndz+E, dz A dx
+E,dx ANdy+dt A\ (B, dx + B, dy + B, dz).
(2.4)
The Yang-Mills equations are
dF + [4,F] = 4j, (2.5)

where j is the g-valued 3-form describing the sources.

If S:R*—G is a function corresponding to a gauge trans-
formation, then

A'=S7'"AS+S7'dS and F'=S"'FS (2.6)
are the transformed potential and field strengths, respective-
ly.

If G is either abelian or semisimple and compact, then

its Lie algebra g is compact, 1.e., it admits a scalar product,
g X a3 X,Y (X |Y )e R, which is invariant,

([ZX1|Y)+ (X|[Z,Y])=0 foranyX,Y,Zeg, (2.7)

and positive-definite. If G is semisimple and compact one
can indeed take the (negative of the) Killing—Cartan form on
g as such a scalar product. By applying {2.7) it is straightfor-
ward to prove the following:

Lemma: If the elements X and Y of a compact Lie alge-
bra are such that [X,Y]} = X, then X = 0.

If (e;) is a linear basis in g, then X may be written as X ‘e,
and

X|Y)=h XX, (2.8)
where
ki, = (ele,)- (2.9)

The structure constants of g relative to (e,) are defined by
[ee ] = ijek
and the condition of invariance (2.7) is equivalent to

hucl; + hycy =0. (2.10)

The two-dimensional unit sphere S, has a metric
d6? + sin’0 dep ” and a surface element d6 Asin 6 dgp. The
two-dimensional Hodge dual on S, will be denoted by a star;
thus
*1 =d@ Asin 0 dg,
*sin @ dgp = — db. (2.11)

There exist a few useful relations between four-dimensional

*d6 = sin 0 dg,
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and two-dimensional duals. Let r = (x* + y* + 2%}"/2 and

u = t — rbethe “retarded time.” In coordinates (u,7,6,p ) the
Minkowski metric is du” + 2 du dr — r(d6 * + sin’6 dp?)
anddt Adx Ady Ndz=du A dr A rd6 A rsin@dgp.
One easily shows that, for any 1-form a on S,, linear in d6
and dg, the 4-dual of du A a is equal todu A *a, whereas
the 4-dual of dr A ais — (du + dr) A *a. Similarly, the 4-

dual of du A dris *r.

lil. THE CONSERVATION LAW

It is clear from the Yang—Mills field equation (2.5) that
the current j of the sources is not conserved by itseif: in gen-
eral dj#0. The ‘“total current”

J =j— (1/47)[4,F) (3.1)
is conserved,
dJ =0, (3.2)

but contains a highly gauge-dependent field contribution,

= — (1/4m)[4,F], (3.3)
analogous to the pseudotensor of energy and momentum of
the gravitational field in Einstein’s theory. Let £, be the
surface (boundary) of a ball £2, CR? of radius R. The total
nonabelian charge g contained in {2, at time # may be for-
mally defined as

g(t,R) = J att=const. (3.4)

25
and, by virtue of Eq. {2.5), expressed as a surface integral,
q(t.R) = (1/4x) J F att=const. (3.5)
2R

The Gauss law (3.5) is analogous to the expression of total
energy and momentum of a gravitational configuration by
means of a surface integral of the Von Freud superpotential.
The rate of change of color, § = dg/dt is given by

g(t,R) = J 9 Ji att=const. (3.6)
z, Ot

provided that the sources are spatially bounded and R is
sufficiently large so thatj = Oon 2. Ifboth 4 and F tend to
0 sufficiently fast as R-— o, then

q.()= lim ¢(tR) (3.7)

is well-defined and conserved by (3.6), ¢ (t) = 0. Itis
known, however, that such a description is not adequate
when radiation is present. In this case, one expects a suitably
defined total charge to change in the course of time and both
A and F to behave as 1/r at large . Making use of the retard-
ed time u =t — r, one can define

¢e() = lim g(u + R,R). (3.8)
R—

The charge g,.,, which is defined on the “future null infinity”
in the sense of Penrose,® may depend on u even though

g, (t)y=0.
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IV. TWO SIMPLE EXAMPLES

The current j, describing the color carried by a classical
gluon wave, depends on the choice of gauge to such an extent
that it may always be reduced to O at a spacetime point.
Moreover, in special cases it may be zero throughout space-
time even though the corresponding solution of the Yang-
Mills equations is believed to represent a truly colored wave.
This difficulty will be illustrated on the following.

Example (i): Let v = t — z and let H be a g-valued func-
tion of x, y, and v. The potential’

A=Hadv (4.1)
is a solution of the sourceless Yang-Mills equations if, and
only if, H satisfies the Laplace equation in x and y,

AH=0. (4.2)
In particular, the solution H = a(v)x + b (v)y corresponds to

Coleman’s nonabelian plane waves.® It follows from (4.1)
that the field and its dual are

F=<dxa—H +dyci;—H) A dv,

dx y
F= (dya—H— —dx 9-11) A dv (4.3)
Ix dy

so that [4 ,7’ ] = 0 and the current / vanishes. Consider now
the same configuration in a different gauge, defined as fol-
lows. Let .S be a G-valued function of x, p, and v, defined as a
solution of the equation

S 'S+ S 'HS=0, whereS= ?. (4.4)
v

The potential 4 ’ obtained from the potential (4.1} by trans-
forming it with .S'is

A'=Mdx + Ndy, (4.5)
where
M=S“‘§ and N=S“1£§. (4.6)
dx ady

The transformed field strengths are

F'=dv A (de+Ndy),

F'=dv A (Mdy — Ndx) (4.7)
and
4ri' = —[A"F'|=(IMM]+[NN)dv A dx A dy. (4.8)

In the transverse gauge (4.5) the current /' has a structure
similar to that of the stress—energy vector-valued 3-form ¢,
given by

8mt, = —((M|M)+(N[N))%dv A dx A dy.
X

(4.9)

The solution given by Eqs. (4.2)—(4.6) may be thus inter-
preted as representing a wave, moving with the velocity of
light, endowed with energy and color densities proportional
to(M |M) + (N |N)and[M,M] + [N,N ],respectively. From
the appearance of the commutators in (4.8) one infers that
radiation of color—if it exists—is a nonabelian pheno-
menon, requiring time-dependent and noncommuting
sources.
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A single pole particle of color g might radiate its charge
away if [¢,g] could be different from 0, but this is not the case,
as follows from:

Example (ii)°: Let z*(s) be the coordinates of a timelike
word line z, parametrized by its proper time 5. One defines
two functions u and » on the Minkowski space R* as follows.
For any £€R?, let u(& ) be the value of s corresponding to the
intersection of the word line z with the past-oriented light
cone of vertex at £ and let

ré) =g (6% — zu))"(u). (4.10)
Consider a pole particle of an a priori time-dependent color
q(u)eg moving along z. The Liénard—Wiechert potential,

A =q(u)yr™'z,(u)dE ¥, (4.11)
is well-defined outside z, i.e., for 70, and the Yang-M ills
equation in that region implies

g+ lg.4]l=0. (4.12)
Assuming that G compact, one obtains from the lemma
(4.13)

This implies / = 0 so that the wave corresponding to (4.11} is
colorless, although it transports energy.

g=0.

V. BOUNDARY CONDITIONS AND GAUGE
TRANSFORMATIONS

The formal definitions of ¢, Egs. (3.4) and (3.5), have
little meaning because of their unwieldy gauge depen-
dence."'° The total nonabelian charge should be an element
of the Lie algebra g, defined up to “global gauge transforma-
tions,” i.e., up to replacements of geg by a ~'ga, where a€G.
If ¢ is so defined, then one can construct out of it invariants,
such as (g|g), which provide gauge-independent, global char-
acteristics of the system. A possible way of obtaining such a
definition is suggested by the theory of general relativity
where one considers total energy contained in “all of space”
and expresses it by a surface integral over “‘a sphere at infin-
ity.” This is equivalent, in our case, to taking limits of g as
R— o0, such as those given by Eqgs. (3.7) and (3.8). If it can be
shown that gauge transformation functions S may be mean-
ingfully restricted to those having for R— oo a limit indepen-
dent of the direction along which one goes to infinity, then
the limit of the surface integral (3.5) provides a total charge
transforming, under changes of gauge, in the desired man-
ner. The class of allowed gauge transformations depends on
gauge configurations under study. In particular, in the case
we consider, the asymptotic behavior (R— o) of the gauge
transformation functions should be adapted to that of the
potentials.'"!?

We shall make a specific assumption about the behavior
of the potentials at large distances from the sources. The
assumption may be justified by reference to what is known in
linear field theories and by the successes of a similar hypoth-
esis in the theory of gravitation.

From now on we shall use exclusively coordinates
u=t—r,r, 6, and @, with respect to which the Minkowski
metric is du? + 2dudr — *(d6? + sin’0 dgp?). We consider
gauge configurations which may be described by potentials
of the form'*:
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A= z r=*4,, (5.1)
k=1

where each A4, is a g-valued form linear in du, dr, r d6, and

r sin@ de, with coefficients depending only on u, 6, and . In

particular,

A, =Kdu+ Ldr+ ro, (5.2)
where

® =MdO + Nsinf dop (5.3)

and K, L, M, and N are g-valued functions of #, 9, and @. The
form (5.1) is related to, but not equivalent with, the property
of the solution to represent outgoing waves and to satisfy the
Sommerfeld radiation condition.>'* The field strengths cor-
responding to (5.1) admit a similar expansion,

F— i r*F,, (5.4)
k=1
where
F,=du A (Ldr+ ro) (5.5)

and the dot denotes, from now on, a derivative with respect
to u. We might have included in (5.1) a term of the form
H (u,0,¢ ) du, which would have contributed to F,. Such a
term can, however, be gauge transformed, and absorbed in
o, in a manner similar to what has been done in Example (J)
of Section IV.

A gauge transformation induced by a function of the
form

S=al6p)l +r 'alu,be)+ -] (5.6)

preserves (5.1). If gauge-transformed quantities are distin-
guished by primes, then

K'=a'Ka+a L' =a 'La, (5.7)
® =a 'wa+a 'da. (5.8)

It is important to note that, a priori, a may be an arbitrary
smooth function on §,. The occurrence of such a function
makes it difficult to define the total nonabelian charge: at
large distances, the field strengths F' transform according to
F' = a~'Fa. In particular, the radial component 8 of the 1/
7* part of the electric field transforms in this way. Therefore,
its surface integral may be changed, essentially at will, by
choosing an appropriate function a.'®"?

In addition to the “‘generic” transformation functions
(5.6) there may be some special ones, also preserving (5.1).
For example:

(i) If ¢ is a central element of g, then .S = exp(c logr)
induces the change 4—4 ' = 4 + ¢r~ ' dr. Transformations
of this form are used to eliminate the r ~'L dr term from the
electromagnetic potential.

(i) If G contains SL(2,R) as a subgroup, then its Lie
algebra admits two nonzero elements X and Y such that
[X,Y] = X.Thepotential 4 = r~'(Xu + Y ) dtisasolution of
the Yang-Mills equations of the form (5.1).” The function
S = exp(tX ) transforms it, however, to the Coulomb form
A =r"'YdL

VI. THE ASYMPTOTIC EXPANSION

We now consider in more detail the asymptotic behav-
ior of a gauge configuration produced by localized, time-
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dependent sources.’> We assume that the current j falls off,
at large distances, as r* or faster. In analogy with (5.2) we
write

A, =Pdu+ Qdr+ rr, (6.1

where 7 is a g-valued 1-form linear in d6 and dg; P, Q, and
the coefficients of 7 depend on «, 6, and ¢.
Under the generic gauge transformations (5.6}, the form
o behaves like a gauge potential on S,. One can associate
with it a field strength,
d'o+ ow] = —B,do A sinfdep, (6.2)
where d ' denotes the restriction of the exterior derivative to
SQ,
B = 9 N~ LM N e
sinf 40 sinf dp
Moreover, for any u-dependent, g-valued differential form
@ = @'e, on S,, transforming as @ —a ~'®a under (5.6),
one defines its gauge derivative with respect to w as
D®'=d'd' +cho’ A D (6.4)
Let ¥ denote the left-hand side of the Yang—Mills equa-
tions (2.5). The g-valued 3-form ¥ may be written as
Y=rRdu+ Udr) A\ dO A sinfdg
+du Ndr A rs, (6.5)
where R and U are g-valued functions and Z'is a g-valued
form, linear in d6 and dg. If the expansions (5.1) and (5.4) are
introduced, then

U= ¥ r*U, and == Y r 'z, (6.6)
k=1 k=1

where the quantities with subscripts are constant along the
null rays u,6,¢ = const. The Yang—Mills equations without
sources are now equivalent to the infinite system

R, =U, =%, =0, k= 1,.2,.... Among these equations we
consider all those which involve only 4, and 4.

In the lowest order (k = 1), U, and = are identically

zero and

R =L (6.7
For k = 2 one obtains the following:
U,=L+[LL] (6.8)

Let us assume from now on that g admits a positive-definite,
invariant scalar product. Remembering the lemma, one ob-
tains from U, =0

L=0. (6.9)

Equation (6.9) will be assumed to hold from now on. The
equation R, = 0 is equivalent to

*E =D*0, (6.10)
where
E =0Q0+K+[KL]. (6.11)

The function & occurring in the gauge transformation (5.7)
may be used to reduce K’ to zeroso that ] = @'. Sucha
choice of gauge may be convenient in computations, but will
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not be adopted here because it requires time-dependent po-
tentials for a static, Coulomb-like configuration. The equa-
tion =, = 0 is equivalent to

[L,w]=0 (6.12)
and U; = 0 gives
D*DL = [L,’E,]. {6.13)

Since the invariant scalar product of L with [L, anything]
vanishes, Eq. (6.13) implies

h,L'D*DL’=0 (6.14)
or, equivalently,
d(h,L"*DL’ —h,,DL* AN *DL’=0. (6.15)

The invariance condition (2.10) has been used, in conjunc-

tion with Eq. (6.4), to go over from (6.14) to (6.15). By inte-
grating both sides of Eq. (6.15) over S, and taking into ac-

count that A is positive definite, one obtains

DL =0 (6.16)
so that Eq. (6.13) reduces to
[LE. ] =0. (6.17)
The last equation one has to consider is =5 = 0, or
7+ [#L]=ADK + [DK,L ]| + *DB,
- T;?u—DQ — [&,Q]). (6.18)

Itfollowsfrom (6.9)and (6.16)that ||L ||> = (L |L )isconstant;
if it is nonzero then one can define the projection g, of color
in the direction of L by

dmg, = f CEILVILI. (6.19)

Since L transforms according to (5.7), the integral (6.19) is
well-defined (gauge-independent). Moreover, from Egs.
(6.10) and {6.16) is follows that g, does not depend on . The
same is true of the “magnetic” (dual) charge m,,

dmm. = [ CBILVILI (6.20)
Sz
For completeness, we give the explicit form of the 1/r
and 1/7 terms in the field strengths after the field equations
(6.9) and (6.16) have been taken into account:

F=du No+r*E du N\ dr
¥r'du A (r—DK)—*B, +0(r?). (6.21)

It is clear from (6.21) that #—2E, and r—2B, are the radial
components of, respectively, the electric and magnetic 1/7
parts of the field strengths.

All solutions to our equations can be divided into two
classes depending on whether L #£0 or L = 0.

(i) If L #0 then one can choose (6.9), (6.10), and (6.16)-
(6.18), with E, defined by (6.11), as independent equations.
This is a rather strong system of equations: e.g., for
G = SU(2) it implies that E,, B, and @ are all parallel to L.

E. T. Newman raised the following problem: Are there
solutions of the Yang-Mills equations, of the form consi-
dered in this paper, for which L cannot be reduced to zero by
a gauge transformation? We have no complete answer to this
question, but wish to make the following comments.

1091 J. Math. Phys., Vol. 24, No. 5, May 1983

{a) The Lorentz condition dA=0 implies the following
restriction

E =L+ [KL]+"d"o (6.22)
which is incompatible with L = 0 if g#0.

(b) If the gauge potential is of the form

A=r"'Ldr+w+A4, (6.23)
Eq. (6.16) holds, and if

[LA]=0, (6.24)
then the gauge transformation induced by

S =exp(— L logr) (6.25)
eliminates the L term without affecting » and 4 ie.,

ST'AS+ S dS=w + 4. (6.26)

One cannot however, expect (6.24) to hold in general and
S ~'AS may contain log  terms prohibited by the assump-
tion inherent in Eq. (5.1).

(c) The analog of L vanishes for the Robinson-Traut-
man solutions'® of Einstein’s field equations.

(ii) If L = O then the field equations reduce to only two,

Q0 +K="D", (6.27)

1 app 9 po
7= DK+ DB, " DQ — [@,Q]).

(6.28)
Given arbitrary K and w one can integrate (6.27) and (6.28) to
find Q and 7, respectively. Formally, the total (retarded) col-
or charge and its rate of change may be computed from

4l = |

S,

*E = f (@ + K)d6 A sin 8 dg,
SZ
(6.29)

47q,. (U) = f Do = f [0, *@). (6.30)
Sz 52

The significance of these formulas is limited by the oc-
currence of the arbitrary function a: S,—G in the gauge
transformation (5.6). The function a can be restricted to be a
constant if (i) the solution is spherically symmetric, or (ii)
A=0(r"?%,ie.,4, = 0.Inthecaseof the Liénard-Wiechert
solution one also does not encounter a difficulty because of
the spherical symmetry of the Coulomb, r~ 2 part of the field
in each of the instantaneous rest systems of the particle.
These simple examples suggest that it may be possible to
eliminate the direction-dependent function a by reference to
some properties of the gauge configurations, e.g., those at
past or future infinity.
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Time evolution kernels: uniform asymptotic expansions
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For a wide class of self-adjoint Schrodinger Hamiltonians, a detailed description of the time
evolution kernel is obtained. In a setting of a d-dimensional Euclidean space without boundaries,
the Schrodinger Hamiltonian H is the sum of the negative Laplacian plus a real-valued local
potential v(x). The class of potentials studied is the family of bounded and continuous functions
that are formed from the Fourier transforms of complex bounded measures. These potentials are
suitable for the N-body problem, since they do not necessarily decrease as | x|— o0 . An asymptotic
expansion in the complex parameter z, around z = 0, is derived for the family of kernels U, (x,p)
corresponding to the analytic semigroup {e—*#:Re z> 0}, which is uniform in the coordinate
variables x and y. The asymptotic expansion has a simple semiclassical interpretation.
Furthermore, an explicit bound for the remainder term in the asymptotic expansion is found. The
expansion and the remainder term bound continue to the time axis boundary z = it /fi{r #0)of the

analytic semigroup domain.

PACS numbers: 03.65. —w

I. INTRODUCTION AND SUMMARY

Suppose H is the generator of time evolution for the N-
body Schrédinger problem in nonrelativistic quantum me-
chanics. This paper investigates kernel representations of the
analytic semigroup family

{e~*#:zeC,Re z> 0} (1.1)

as well as that of the time evolution operator family

{e— /M cR, ¢ #£0}. In particular, a uniform asymptotic
expansion in powers of z of the semigroup kernels is found.
Because the coefficient functions of the asymptotic expan-
sion are polynomials in Planck’s constant A, the asymptotic
expansion may be interpreted as a semiclassical expansion in
the limit ~—0.'~* The asymptotic expansion is accompanied
by a remainder term with an explicit bound. This expansion
and the error bound are valid on the time axis as well as the
analytic semigroup domain Re z > 0. A novel feature of the
asymptotic expansion is that it is uniformly valid for all val-
ues of the coordinates x and y.

We choose a mathematical setting of the Schrodinger
problem that is sufficiently general to include N-body quan-
tum mechanics. Take x to be a position vector in a d-dimen-
sional Euclidean space R“. If each individual particle has a
mass m and moves in three dimensions, then d = 3N. The
quantum scale factor in this situation is

g ="#/2m. (1.2)
Wave functions for spinless particles are elements of the Hil-
bert space # = L *(R?). This Hilbert space has inner pro-
duct (£,g), where f,g are elements of 5. The inner product is
taken to be antilinear in the left argument and linear in the
right. The symbol ||f || denotes the norm (£,f)'/?on . If A is a
linear operator A:%°—7, then ||4 || is taken as the operator
norm. Other L £(R?) norms will be introduced as they are
needed and denoted by the symbol of |- ,.

Consider the Hamiltonians that define the Schrodinger
problem. If 4, is the Laplacian in RY, then take H, to be the
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unique self-adjoint extension on #° of — ¢4, . The full Ha-
miltonian H is defined by the operator sum

H=H,+V, (1.3)

where the perturbation V is also assumed to be a bounded
(V|| < o) and self-adjoint operator; namely ¥ is the opera-
tor determined by multiplication with a continuous, bound-
ed and real-valued function v(x),

(Vf)x) = vix)f(x),  flx)eL *(R7). (1.4)

Since Vis bounded, H and H, share a common domain

9 C 7. However, it is not assumed that v{x) has any decay
as |x|-> . Such a decay assumption would prohibit the
treatment of the N-body problem, which is characterized by
nondecaying potentials.

Take A tobethespectrum of Hand {E, :A€A } tobe the
unique family of spectral projectors defined by H. Since Vis
bounded, H is bounded from below; i.e., H + ||V||-[>0 and
AC[ — ¢,00) with ¢ = ||V|]. The linear bounded operator
e " on ¥ = L }R%is defined in terms of its spectral inte-
gral

e‘”’:f e~ *dE,, Rez>O0. (1.5)

The fact that H is unbounded from above implies that the
integral (1.5) defines a bounded operator only if Re z>0. The
parameter z has the standard physical interpretation. If z is
positive and z = 8 = (kT )~ !, where k is the Boltzmann’s
constant and 7T is the absolute temperature, then

{e ~P".BeR,B> 0} defines the family of the semigroup oper-
ators connected with the heat transport equation. If z is
imaginary and z = it /#i, where # is the time displacement,
then {e ~ “/#":tcR} defines the family of the time evolution
operators. From here on, in order to simplify the notation for
the time evolution operators we will replace ¢ /#i by . On the
other hand, if we take a complex domain

D = {zeC:Re 2> 0}, then {e~ *:zeD } defines a family of
analytic semigroup operators. In this paper, we treat the ker-
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nel representation of the operator e ~** of Eq. (1.5) in the
domain D \ {0} = {zeC:Re z>0 and z#0}, which includes
the heat kernels and the time evolution kernels as special
cases. In a similar fashion, the unperturbed version of (1.5) is
defined by

esz(,:f efz'ldEg, Re z>0, (1.6)
o

where {E:4>0} is the family of spectral projectors con-
nected with H,,.

The kernel U, (x,) of e ~ *# for zeD \ {0} is described in
detail. In particular, since this kernel has an essential singu-
larity at z = 0, it is useful to introduce the factorization

U, (x.p) = UP(x — y)F (x,p;2), (1.7)

where U (x — y)is the convolution kernel corresponding to
e ~# The function F(x,y;z) is analytic in D, continuous in
D = {zeC:Re 20} and F(x,p;0) = 1 for x,yeR?. By employ-
ing a constructive Born series expansion of the kernel

U, (x,p), it is possible to find an explicit series representation
of F (x,y;z). Restructuring this series representation provides
a uniform (in x,yeR?) asymptotic series for F(x,p;z) in the
form

M—1

Flxp;z) = 20(( —2f'/n)P,(x.y) + Ep(x.p;2).  (1.8)
The coefficient functions P, (x,y) are all well known'™; they
are polynomials in v of the order # and polynomials in the
quantum scale parameter ¢ of order n — 1. The error term
E(x,y;2) is of order O (|z|™). A uniform bound for E,, (x,y;z)
in x,peR? is obtained. The number of terms M in the expan-
sion (1.8) is proportional to the number of bounded deriva-
tives the potential v(x) possesses.

The program this paper embarks on is a special case of
“local geometrical asymptotics of continuum eigenfunction
expansions” recently outlined by Fulling.’ See also Simon.®
This program generalizes the classical investigations of the
asymptotic density of eigenvalues of the operator H

Hyy = Ay, e (1.9)

as A,— . This investigation is carried out by studying the
interrelationships between the kernels of the semigroup

e~ *F, the resolvent (H — z)~!, and the measures defined by
the spectral kernels e(x,p;4 ) of the projectors {E, }. In our
approach the emphasis has been placed on controlling the
behavior of the time evolution kernels of e = “¥. It is custom-
ary’ touse the M = 1 and z = 8> O version of the asymptotic
expansion (1.8), together with the Tauberian theorem in or-
der to derive the large A asymptotic behavior of e(x,y;4 ). Asa
rule this Laplace-transform Tauberian approach gives one
only the first term of the large A asymptotic expansion for
e(x,y;A ). In a subsequent paper, a method to utilize the full
M-term expansion of F {x,y;z) will be developed. As a conse-
quence, it will be possible to find an M-term asymptotic ex-
pansion of e(x,y;A ) that is analogous to Eq. (1.8).

The investigation in this paper is carried out for the
class of potentials v(x) that are represented by Fourier trans-
forms of bounded complex measures supported on R?. Ito®
and Albeverio and Haegh-Krohn® have used this class of
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potentials to study the Feynman path integral representa-
tion of e ~ “#. We use this class in order to obtain the con-
structive series representation of the kernels for e ~ ¥, This
class of potentials has a number of attractive mathematical
properties. (For details, one should refer to Ref. 9).

Let .# (R?) be the set of all bounded complex measures
defined on the Borel field Z on R“. For each measure
ueA (R?), we can define a potential function by the Fourier
transform of y;

v(x) = Ldei""du(a),

where ax denotes the scalar product of two vectors in R?
The potential thus defined is bounded and continuous, since

(1.10)

)< | dlulia) = RY) < o, xeRY, (L1

where |1£|(e) (ee 7 ) is the total variation of u{e). We define the
norm of ¢ in .#(R?) by

ol = [ @ lull = luliRe). 112
Then the operator norm of V in (1.4) satisfies
IV <l (1.13)

so that we can take ¢ = ||¢|| in (1.5). The transform in (1.10)
defines a natural class .% by

F = {ux) = Jdeiaxdy(a):pe/(Rd)], (1.14)
R

which is a subset of the space composed of all bounded and

continuous functions.'® The elements of the spaces % and

# (R?) are in one-to-one correspondence. This is a conse-

quence of the uniqueness of the transform (1.10) that states

v(x) = 0 if and only if x = 0.""

The reality condition on v(x) is satisfied if the measure
obeys the reflection property u( — e) = ule) for all e %,
where — e = {xeR?: — xee} and the bar denotes the com-
plex conjugate. We will denote by .#"(R?) the space of mea-
sures ue.# (R?) that satisfy the reflection property. .7 " will
indicate the Fourier image of .#"(R?).

It is convenient in our study of asymptotic expansions
to characterize potentials that have bounded partial deriva-
tives of order M or less. Thus for a positive integer M, we
define a set of functions

Ty = {v(x)e?’:J- la|"d |ull@) < o for n=0,1,2,.. .M},
Rd
(1.15)

where u is the measure connected with v(x). In fact, if
v(x)eF 4, then there exists a smallest finite positive constant
K (depending on u and M ) such that

f la|"d |ul(@<K x| for n=0,1,..M. (116
Rd

We call K the bound constant of the measure u in the space
F 4. Suppose D £ denotes an arbitrary partial derivative in
R? multi-indexed by L = (/,,L,,...,];) with the length

|L |=l, + 1, + - + 1, (,,>0). If {x,;i = 1,...,d } are the Car-
tesian components of x, then D £ is the partial derivative
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FAVERNERY
sz(_) (_)( ) 1.17
dx, ax, ox, (117)
For v(x)e.#},, then
(D Lv)(x)| <K' ||u|| forall |L|<M. (1.18)

Potentials in class .% " are suitable for discussing the V-
body problem, since they do not require any decay as
|x|— o0 . Further, the class .# " has periodic potentials. Thus
our treatment of asymptotic expansions for the time evolu-
tion operators is also applicable to the problem of particles
moving in a periodic medium or an almost periodic medium.

The asymptotic expansions we describe have been dis-
cussed heuristically in two recent papers.>* In these papers,
the asymptotic expansion was obtained formally for the spe-
cial case of the heat equation operators e ~ 4, but no esti-
mate for the error terms were found. However, this first
treatment did succeed in completely determining the coeffi-
cient functions P, (x,y). In particular, it was shown that there
is a simple algorithm that constructs P, {x,y) in terms of con-
nected graphs. Further, the physical interpretation of the
semiclassical content of the expansion (1.8) and its relation-
ship to the Wigner-Kirkwood semiclassical expansions™* of
the quantum partition function has been analyzed in detail.

The construction of this paper is as follows. In Sec. II
the integral kernel Up(x,y) of the semigroup {e ~#7},_, is
derived by using the iterative formula with respect to the
matrix elements of e ~## and e ~#", In Sec. III we investi-
gate the analytic property of U, (x,y) in z and try to extend the
integral kernel representation into the whole domain D of
the analytic semigroup and to the imaginary time axis z = it
(t #0). In Sec IV the uniform asymptotic expansions of the
kernel U, (x,y) and F (x,y;z) are derived together with an ex-
plicit estimate of the remainder terms.

Il. INTEGRAL KERNELS OF THE SEMIGROUP

In this section, we will introduce the integral kernels
which represent the semigroup family {e ~#},_ . The fol-
lowing facts summarize the well-known properties'? of the
semigroup family:

(i) e—B.He—Bsze—(ﬁ.+ﬂz)H’ .31ﬁz>0, (2_1)
(ii) s-lim e %"y =u, ueL*RY), (2.2)
BL—0 +

(iii) if ueZ, then e ~##ue for >0 and the strong
derivative (d /df Je ~ #Hu exists and

%e""’u: — He Py, B>0. (2.3)

These properties and the similar ones for H,, give us the next
lemma about a type of Born series expansion of the matrix
elements of e ~ 74,

In order to simplify the expressions entering this Born
expansion we will use

[ tave

to represent the n-fold iterated integral

J:>§.>--.>;n>omf{ ~}dé dgydg,.
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Similarly, we use the abbreviation

[[are=[ at.[ e[ .

Finally, the n-fold integral of measures du(a;) will be indi-
cated by

[a = [dutas)- [auta,)

Lemma I: Suppose the operator V is bounded and self-
adjoint on ¥ and H = H, + V. Let u,weL *(R¢) and £ > 0;
then

(1) (w,e = 27u) = (w,e ~FHou)

5
—J dp'(we P HVeB—F Moy (2.4)
(4]

(2) (we =" u )—(we*B”“u)

> (—m"j dng
n=1
><(w,e Bé',.HoVe B(gn—l_gn)HOV

XX Ve P —80Hoy) + R, (2.5)
where

Ry=(—-8) ld”s‘(w,e“““”

X Ve-B'fol‘§N]H0V."Ve—3(l fg.)HOu) (2.6)
and R, has bound

Ry <L vt o, @)

Proof: (1) Take u,weL *(R%) and set
8 B')=(w,e =P HVe~¥—FMy) for B>8'>0. Then using
(1.5) and (1.6), we get

ﬁ,uww=f je_’”“B’B')"dz(EAw,VEg',u).
— /O
Since the integral is bounded by
[ [ ermang v wi<e ol 17 ul <
—cJO

% .\B') is continuous in B> '>0. On the other hand, if
ueZ, then H = H, + V and the above property (iii) leads us
to

ouB)

— (w He—S’H —(ﬁ—B‘JHou)

- _ —B'Hy—(8—B')H,
ﬁ(w e u).
Thus (w, e ~#He — 8~ 8Hoy) is differentiable in B for
B>pB'>0. Integrating /2 , (B’) from O to B and using the
property (ii), we get (2.4) for weL (R?) and ueZ . The
w,ueL *(R¥) case is the consequence of Z = L (R) and the
boundedness of V.

(2) N = 1 case is simply the integral variable change of
B'—&,by B’ = BE, in (1). The general case is obtained by
iterating (1) and changing the integral variables after that.
The bound in (2.7) is obtained from ||e ~## || <1V, O

The matrix elements of the iterated operators in (2.5)
will be calculated by using the next lemma. We state this
lemma for all zeD, instead of B > 0, because of its later useful-
ness in analytical continuation.

(we —# HH g~ 6~ 8'Hoy)
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Lemma 2: Let ik JeL '(R?)nL *(R?). Suppose u(x) is the
Fourier transform of @i{k ),

u(x) =

J”"“(k)dk aa. x; (2.8)

(ZTT)d /2
then

(1) u(x)eL *(R?) and |jufl = |2,
(2) For all zeD, we have

— zH, — 1 — 2k ? + ikxp
(e ~*Poy)(x) = (277-)4/2je ki r gk )dk  aa. x.(2.9)
Thus
—z 1
l(e ~ *ou)(x)| < o )mnuHL aa x (2.10)
and
lle = eull<{lall = ||u]|. (2.11)
(3) For all zeD and 13£,> £, >0 (n = 1,2.-), we get
(e - Z§nHuVe — 2y — gn)HoV"Ve — 21— §,)H0u)(x)
ES fg;lgn (x,k,z)ﬁ(k )dk a.a. X, (2 12)
where
ggl..,g (x k,Z)
=i )m d'pexp{ —zg¢,(k + a, + ~ + a,)
_ZQ(§n~1 §n)(k+al+ '+an*1)2_"'
—zg{l — £k + ik +a, + - +a,x}  (2.13)

1 n
= (27T)d/2 J‘d H

Xexp{ —zq E": ENE,aa,, +1'(l=ioa,)x] (2.14)

Im=20

with the convention £, = 1,¢, = k, and
& N, =Min{£, £, }. The functiong, . (x,k;z)hasa
pointwise bound

llell”

e xkz)< . x,keRe 2.15
|g§| §n( )l (217_)4/2 ( )
Thus (2.12) has the bound

(e~ oy~ -1 = EHop g — 21 — E0Huy) )
fleell”
) 2.16
(M“”ﬂ 17 (2.16)
fora.a. x.
Furthermore,
”e - z§nH()Ve — Ay — 5")H"V... Ve — 2zl — §,)H0u||
<|lel|"l|@ll = fleell™) el (2.17)

Proof: Results (1) and (2) are standard (for details see
Ref. 13). (3} is the generalized version of (2}, since n = O case
reduces to (2). We shall prove (3) by induction. We assume
(2.12), (2.13} and (2.16), (2.17) for n-—>n — 1. Let the numeri-
cal multiplier, £, _,, of the left most exponential operator in
{2.12) be replaced by &, _, — £,. Now multiplying by v(x),
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we get

(Ve = n-r—Snlfop g — 1 = £Hay) x)

o ™ [k [

Xexp{ - zq(gn— 1 §n)(k +a, + -+ a, )2

— e —zg(1 = EDK* +ilk + @, + - +a,_ i}
Here we can change the integral order arbitrarily, since the
integral is absolutely convergent. Change the integral vari-

ablekintok — a, — - — @, and move k-integral to the left-
most position. Then (2.18) is written as

(2.18)

N S

where
@ (k)= [ exp{ —zql6, &,k —a, -
—2q(1 - § i)k — ay — - — @)’}
Xk —a, — - —a,) (2.20)
Note that (2.20) satisfies
(ulk)|< [d 1l ) [d ] (@, otk — a, — -~ a,)
(2.21)
since 1>£,>-2£, >0 and Re z>0. Therefore we get
HPa e <leell™lllz: < oo (2.22)
and
12 117 < (el ™)l < oo (2.23)
Estimate {2.23) is an immediate consequence of Holder’s in-
equality.

Equations (2.19), (2.22), and {2.23) allow us to apply (2)
for u—Ve ™ -1~y and z—z£,€D. Then using (2.20),

we get

(e - ZgnHoVe — ALy -1 — §A)Ho".u)(x)

a.e.

Xexp{ - Zq(gn— | S gn)(k - an)z -
—Zq(l - fl)(k —ay— an)z}&(k —ay - —a,)

(2.24)

A couple of changes of integral order and the integral vari-
able change k—k + a, + - + &, give us (2.12) and (2.13).
Equation (2.16) follows from (2.10) with (2.22), and (2.17)
follows from (2.11) with (2.23). Equation (2.14) is easily ob-
tained by rearranging the exponential factor of (2.13). O
The following proposition gives us the kernel represen-
tation of the semigroup family. (R?) will denote the
Schwartz space on R?.
Proposition 1: Assume ve.% .
(1) For all u,we.#(R?) and all 8> 0,

(e~ f dx j dy Ux — ))F (x,938) wi0uly)
(2.25)

where
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2 2
Ui )—[ Pexp| - %] 2.26)
and
Fasi=t+ -6y d €[au
Xexp( 2 é-l’é_m &y
+i3 (1~ + 6l 27)
with
8166, )=Min{£,(1 — £,)n(1 — £)). (2.28

F{x,y,3) is a uniformly convergent series in x and y for an
arbitrary fixed 50 and has the bound

|F(xp;8)| <™ x,pyeR?, B>0. (2.29)
(2) Forall >0,
Us(x.y)=Ugx — y)F (x,:8) (2.30)

defines a bounded integral operator U, on L *(R?) with the
operator norm || U [| <e?!"*! and

(e = PHu)(x) = fdy Ugxpuly) aa. x

and for all ueL *R?).

Proof: (1) Let’s start from Lemma 1, statement (2) with
N— . If we use Lemma 2, statement (3) with z = 3, then for
all v, we #(R?) and all B> 0, we get

@Ug+ lim 3 (—pr[ v

N—oo '

(2.31)

(w,e ~PHu) =

x f dx wix) f dk gy, (xkBK). (232

Here, if we use (2.14), we get

Vo) = [k g, kB )

= de u(y)J-d "yLJ‘dk CXP{ —Bq

x S Ny +i S e ),
Im=0
{2.33)
where we have used the interchangeability of integral order
since the k *-term in the exponential factor is
— Baléo Néglagao = — Bgk *<0. The full exponential factor
expression is

—Bg S 0 b,

Im=1

n _ 2
+ i1;1“1 —&x + &y, — E‘E:L
_ . SP AN
Bq(k + 3 =5 ) . (2.34)

Performing the Gaussian integral over k, we get for (2.33),
Vi) = [dy uplUx - [
- ﬂq z 0 (§l’§m )alam

Im=1

Xexp[
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413 (1 - G + Gl 239)

Thus (2.32) becomes

(w,e ~PHu) = (w,U Q)
N 1 R
+ tim 51— Ay afdx R [ ay upte -

x[duexs| g 3 otertnac,

i3 (-t fly)az]- (2.36

=1
Note that the integral of each term in (2.36) is absolutely
convergent, since

B et = 5 (g g) [ Zgee] 20

(2.37)
forl = §0>§1>"'>§n }0) and

f dx [ dy | WU Dx — yhupy)

llwll, JlullL < oo (2.38)

1
< lamBay

Furthermore, since

i(—ﬂ)"fd"ffd"ﬂ

n=1

XCXP[ Bq z s mla,,

Lm=1

Hi (1= G+ el ]|

I=1

<5 Bl (ﬂllﬂl!)

n=1
we can take N— «o inside of the integrals over x and y. Thus
we get (2.25) with (2.26)—(2.28). Equation (2.29) is obtained
by taking N— co in (2.39).
(2) Let’s consider

<M _1 for N=12., (2.39)

Ypl) = f Uplxolubldy B>0, uel (R%).  (2.40)

Although Uy{x,y) is not a convolution kernel, it has a bound
which is a convolution kernel; namely

|Ug(x,p)| <11 U Qix — y)  for B> 0. (2.41)
from (2.29). Therefore, the integral in (2.40) has bound

[y )| <P f UQtx — y)luly)|dy.

Since fU Jlx)dx = 1 and |u(x)|eL *R?), the Hausdorff~
Young inequality for convolutions'* gives us

19511 <e® ¥l (2.42)

which means that the integral in (2.40) is absolutely conver-
gent for a.e. in x and the integral operator Uj has the opera-
tor norm bound of || Uy || <e® 1.

Let’s prove (2.31). Since both sides of (2.31) define the
bounded operators on L *(R?) with common operator norm
bound €#!“!, we only need to prove it for u(x)e.¥(R?). How-

T. A. Osborn and Y. Fujiwara 1097



ever, this is obvious, since (2.25) means that
(wf) =0 for all we #(RY),
where f(x) = (e ~ #Mu)(x) — ¢z (x)eL ¥R?). m]

Hl. INTEGRAL KERNELS OF ANALYTIC SEMIGROUP
AND TIME EVOLUTION OPERATORS

The objective of this section is to extend the kernel de-
scription Ug(x,y) of the semigroup family {(e ~##:8> 0} to
include the family {e ~*#:zeD \ {0} }. Observe that the fam-
ily of time evolution operators {e ~“:t 50} is a subset of
this enlarged class of operators. The necessity of the omis-
sion of the point z = 0 is obvious because U £(x — y) has an
essential singularity at 8 = 0. The basic method we employ is
a mixture of analytic continuation in the form of the matrix
elements of e ~ * plus a control of the operator norm bound
of the integral kernels. The next lemma gives a detailed norm
bound for e ~ ¥ and establishes the analytic behavior of the
matrix elements of e =",

Lemma 3: Let V be a bounded self-adjoint operator on
LRY).

(1) For zeD, e ~*¥ is a bounded operator on L *(R?) with
norm bound

[le 2| <eRe=1"1. (3.1)
(2) For all w,uel (RY)
Sooul2) = (wie ~*u) (3.2)

is a holomorphic function of z in D and is continuous in D.1t
has bound

oo (2)| <™ M|l [[u]] ~ for zeD. (3.3)

Proof: (1) is an immediate consequence of (1.5). For the
proof of (2), let’s set

hyul2) =e VS, (@)

:J e~ AWVI+2d (w,E, u). (3.4)
The integral is bounded by
| d sl < ol el < o

since [e %IV + M| <1 forzeDand A> — ||V}||. Thus &, ,(z) is
continuous in D. The holomorphy is a consequence of Fu-
bini’s theorem on the interchange of order of iterated inte-
grals and Morera’s theorem. Choose C to be an arbitrary
simple closed rectifiable contour of finite length lying inside
of D. Then

otz = [ {§ e 4 deld b o
C —clJc

Multiplying ¢*!"'! onto 4, , (z), we get the continuity and ho-
lomorphy of f,, ,(z) in D and D, respectively. Equation (3.3) is
implied by (1). O

The next step is to define a holomorphic function in D
that is suggested by the series of (2.27) in Proposition 1. We
have

Definition 1: (1) The function F (x,y;z):R? X R? X D—C
is defined as the absolutely convergent sum
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Fleyz)= lim 3 B, (xy) 3:3)

N—ow ;20
(=2

B, (x.y;z) = " fd"ﬁjd"#
. (1]

xeXp[ —2q Y 0 énlaa,

Lm=1

13 (1= &b + ), 3.6
'=1
where 6 (£,,£,,,) is (2.28) and By(x,y;z) = 1.
(2) The functions U %(x) and U, (x,p) for zeD \ {0} are
defined by

U(O) . 1 d/2 |x|2
2 (X)= o exp “azg ) (3.7)

U, (x.py) = UDNx — yp)F (x,p;2). (3.8)

A summary of the properties of F (x,y;z) that follow from
the series (3.5) is

Proposition 2: Let ve.# . The function F (x,p;z) satisfies
(a) Boundedness. Let D, be any arbitrary bounded domain
D,CD. The series (3.5) is absolutely and uniformly conver-
gent for all x,y,zeR? X R? X D,. The sum of (3.5), F (x,y;z) has
the bound

|F (x,p;2)| <Ml for zeD. (3.9)

(b) Continuity and holomorphy. F {x,y;z) is holomorphic in D
and continuous in D. F(x,y:z) is jointly continuous in x,y
everywhere in RY X R?.

Proof: (a) The absolute and uniform convergences are a
consequence of the nonnegative nature of
37 - 10(EhE)a,a,, in(2.37). For all zeD, the series for
F(x,y;z) is majorized term-by-term by (1/n!) (|z|||u||}" . So (a)
is proved.

(b) Note that each term of (3.5), B, (x.y;z), is holomor-
phic in D and continuous in D for each fixed x,yeR? X R®.
These properties are transmitted to F (x,y;z) by the uniformly
convergent nature of (a). The joint-continuity in x,y is also a
consequence of the uniform convergence relative to x and y
plus the fact that each term is jointly continuous. O

The next proposition shows that the result of Proposi-
tion 1, statement (1) for 8> O can be extended tozeD \ {0} by
the analyticity and the continuity of the matrix elements of
e

Proposition 3: Letve.#". For zeD \ {0} and u,we ¥ (R¥),

(w,e ) = fdx f dy WU, (x)uty). (3.10)

Proof: Let’s set

— zH,

Sou2) = (wie ™),

8uule) = [ ax [y W) UL ety
~ [ax [ ay whe] U2 -y eyiziuy)
Since u,we.#(R?), Lemma 3 and Proposition 2 lead us to the
result that £, (z} and g, , (z) are both holomorphic in D and

continuous in D \ {0}. On the other hand, Proposition 1,
statement (1) shows
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fuulB) =8,,B8) for B>0.

By the identity theorem for holomorphic functions we get
Jwul2) =8,.(2) forzeD.

The continuity of £, , (z) and g,,.,. (z) in D \ {0} completes the
proof. 0

We need to know several properties of the integral oper-
ator defined by

glx) = f U (e ulp)dy, (3.11)

in order to recover the kernel representation of e ~*# from
(3.10). In particular, the property ¥, (x)eL *(R?) plays the es-
sential role. This can be easily shown for zeD, if we use an
argument similar to the discussion in the proof of Proposi-
tion 1, statement (2). On the other hand the case z = it (¢ #0)
necessitates a more detailed estimate. The next lemma,
which is based on Lemma 2, permits us to establish the boun-
dedness of the integral operator in (3.11) for zeD \ {0} in a
restricted sense.

Lemma 4: Let ve#". For u(x)e.# (R?), zeD \ {0} and
13€,>2>&, >0, we get

v "“"(x)sfdkgg,...gn (e ksz)ik
- f U —phg  xpzuly),  (3.12)

where éi(k ). (R¢) is the Fourier transform of u(x) and

s i [duesp| 2 3 0k, hasa,

+ ’)i‘“ & +§,y)a,}. (3.13)
¥:"*"(x) is a L -function and has norm bound
2 *||< )] "lll, zeD \ {0}. (3.14)

Proof: Let us set for B> 0
I EJ- dk g . (x.kz)ak).
Ik|<B

Since the integral range is finite and @(k ),u(x)e. (R?), we can
follow the same process as used to get (2.35). Thus, we find

I = fdy wlp)UOx — ) f d"u exp{ — zg

X S 0€utalaan +13 (1= E)x + €l

Im=1

(3.15)
where
d/2
PR
2m)? Jiki<r
Xexp[ —zq(k + ig}a, -z —y)Z]. {3.16)
I=1 qu

Since Re z>0 and z#0, a simple calculation of the complex
integral gives us
d/2 d/2
tim J, = 4720 [l]
e (2m)*  lzq
Thus if we take B large enough, we can find a B-independent

=1 (3.17)
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constant, which permits us to take the limit B> in (3.15)

inside of the integrals of fdyfd "u, by Lebesgue’s dominated

convergence theorem. Equation (3.14) is the combined con-

sequence of (3.12) and Lemma 2, statement 3. O
Proposition 4: Let ve 7 "

{1} For all zeD, U, {x,p} in (3.8) defines an integral operator

U, on L }(R?) with the operator norm bound

“Uz”<eleluli‘ (3.18)

(2) For all t #0, U, (x,y) defines an integral operator U,, on
L '(R*)nL *(R?) with the operator norm bound

U, | <, (3.19)

Proof: We first prove the integral transformation of
(3.11), U,:u—,, defines a bounded operator for zeD \ {0}
with the domain .#(R“) and an operator norm bound
| U, |I<e!!I#!, In fact, if u(x)e”(R?) and zeD \ {0}, the inte-
gral in (3.11) is absolutely convergent for xeR¢, since

(U, (x)|<|U%x — p)jelil,

Oy _ vl — 1 /2 _Rez
|U P — ) [4ﬂ|z|q} exp[ 4'2|2q(x ») ]
(3.21)

(3.22)

(3.20)

<[47rllzlq ]d/z’ zeD MOl

follows from (3.7)~(3.9). Furthermore, ¢, (x) in (3.11) is seen
to be a bounded and continuous function if zeD \ {0} and
u(x)e.”(R¢). Note the relationship

N f d"h, . (xyi)

between (3.6) and (3.13}. These functions have pointwise
bounds

|hg, e, (x2) | <le” (3.23)
and
|B, (xy;2)|<————(lz|”"‘ " (3.24)
for x,yeR? and zeD \ {0}. Then (3.11) becomes
N
Y.x) = [dyup)UPx —y)lim ¥ B, (x.p;z)
N—oo =
& (=2 [ '
=S 178 | g
n;o n! J(; §
X [d a0 0tx by, g iz, 1329

where the estimates (3.22)—(3.24) and the fact that
u(y)e.#(R?) allow us to use Fubini’s theorem to justify
changing the order of integration. Further, the dominated
convergence theorem permits us to interchange the order of
the limiting process. If we use ¢¢"*" in Lemma 4, (3.25) is
written as

volx) = 2‘—;—,‘*’— f e (x), (3.26)

[Note that ¢, (x} is actually continuous in x since it is the sum
of a uniformly convergent series of functions.] Thus we get,
for all zeD \ {0} and all u(x)e.”(R%),
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I9.1< 3 L0y [ avgytsia
"B e .
<ng07 [asne=

<"go%”)_”u” =¢l lllllllllu”, (3.27)

where we have used (3.14).

If we restrict z to belong to D, then the convolution
bound of U, (x,y) by (3.20) and (3.21) makes it possible to
define the integral of (3.11) for all u(y)eL *(R?) and a.a.xeR®.
[See the proof of Proposition 1, statement (2)]. Since #(R¢)
is dense in L %(R¥), the extension principle for bounded oper-
ators leads us to the conclusion of (1).

The same discussion is also applicable in the case of (2),
since, in this case, the integral in (3.11) is absolutely conver-
gent for each xeR“ by (3.20)and (3.22) if
u(x)eL (R¥)nL %(RY). O

We note that the operator norm bounds (3.18) and (3.19)
for e ~** are less precise than those given in Lemma 3, Eq.
(3.1). This situation seems to be inevitable, since we formed
the estimate of |1/, || using a term-by-term norm bound of the
Born series in {3.26).

Finally we get the following theorem about kernel re-
presentations of the analytic semigroup and the time evolu-
tion operators.

Theorem 1: Let ve.#".

(1) If zeD and u(x)eL (R?), then

(e~ ) = [dy U xpub). 3.28)
(2) Suppose t 0, if u(x)eL '(R*)nL %(R*) then

(e~ ule) = [y Uy eyt 3.29)
and if u(x)eL %(R%) then

(e~ ujx)=s —lim |  dy U, (epu) (3.30)

B—e  Jiy<B

Relations (3.28) and (3.29) are valid for a.a. xeR®.

Proof: Consider (3.28) and {3.29). We only need to prove
them for all u{x)e.%(R?), since both integral operators are
known to be bounded operators in L *(R?), and
L '(R?)nL *(R?), respectively, from Proposition 4. However,
this is obvious, since Proposition 3 shows

(wf)=0 for we”(R?)
with £(x) = (e ~ *u)(x) — ¥, (x)eL }R®) for zeD \ {0} and
u(x)eS (R).

Equation (3.30) is proved by taking

_[u(x) for |x|<B,

ugle)= 0 for |x|>B,

and using (3.29) and the fact that ||¢ — 45 || —0 as B—c0.00
For C = potentials, v(x), results similar to Propositions

2—4 and Theorem 1 for the time-evolution kernel have been

recently obtained by Fujiwara,'* Kitada and Kumano-go,'¢

and Zelditch."’
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IV. UNIFORM ASYMPTOTIC EXPANSIONS

This section derives the small z asymptotic expansion
for F (x,y;z). The asymptotic expansion for F (x,y;z) implies a
corresponding asymptotic expansion for the kernel U, (x,y)
of the operator e ~ **. Our analysis aims at relating the struc-
ture of the asymptotic expansions as well as remainder term
bounds to the smoothness of the potential v(x). The expan-
sions are all uniformly valid in the coordinate variables
x,peR? and in any compact subset of the analytic semigroup
domain D. The expansions remain valid on time axis bound-
ary except fort = 0.

Lemma 5: (1) For all zeC, the exponential function has
an N term estimate

= jli(_z)wHN(z) (V=1.2,-), (4.1)
where =
Hyle) = (2| d%e = “.2)
For Re z>0, i
e < )

(2) For 13£,>>£,>0and a,,...a,cR" (n = 1,2,3,...), we
have

0< 3 0Enlman <t Sat (@4)

Im=1
Proof: (1) Itis simple to check that (4.1} is truefor N = 1.
The general case can be shown by substituting

1
e F =1 —z§Nf dg e~

SN

=1—z| dfy, e =

into (4.2).
(2) Nonnegativeness is (4.4) is already shown in {2.37).
To show the upper bound, we use the Schwartz’s inequality:

i 0 (§I!§m )alam

Im=1

< {1,,.2; OEntn )2} 1/2[ S (@a, )2] v

lm=1

For £,<§,,., for example, one has

O1E1En) = E(1 — £,)<E(1 —§:)<%

Thus
{1 mZ_ ]6(5,,5",)2] %[ 2= 1]"2=%
and o
[1,,‘2 ean )2] { z“’,;_l a, ]m = élaf.

Combining these results establishes the upper bound in

4.4). O
The basic idea used in obtaining the uniform asympto-

tic expansion of F (x,y;z) is to find the asymptotic expansions
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for B, (x,y;z) and then sum the expansions over n. Once more
itis helpful to introduce a couple of abbreviations. Let 2, and
b, denote the recurring real exponential arguments

a,rkriara)= 3 06k (4.5)
and ’
bty x= 3 (1 = Ebe+ Eolar. (49

For B, (x,y;z) we have
Proposition 5: Let ve5},, and take K to be the corre-
sponding bound constant in the family .# ;,,. For all zeD and

n>l,
z)'l+m

Dm,n +m (xry) + Rn,M(x!y;z)'
4.7

The functions D,, ,, . ,,.(x,y) are real valued, jointly and uni-
formly continuous in R? X R and represented by the multi-
ple integrals

Dpnambi = ("5 7) [ @t [armiare™ a3

forn>1,m>0. Furthermore D, (x,y) = 1and D, ,, (x,y) = 0
ifm>1. Forn>1,D, , . .(x))satisfies the estimate

Do s (" T Yl () 49)

for m<M. For all x,yeR? and all zeD, the error term
R, »(x,y;2) has the bound

Uz llee)" ( IZan2K2>’”_
nM! \ 4
Proof: Start with integral (3.6) that defines B, (x,y;z).
Use Lemma 5, statement {1) for the exponential argument

z“

B, (xy;z) = ot m),

(4.10)

]R,,,M(x,y;z)K

M—1

1 m
Z W( _ann) +HM(zqan)‘

m=20

~— zqa,

(4.11)

Inserting expression (4.5) for a,, into (3.6) gives (4.7) and (4.8).
The error term is the integral

ﬂfold "§fd " e H,(zqa,). (4.12)

Employing estimate (4.3) for H,, and utilizing (4.4) to bound
a, gives us

[t 4l o, <l (KD oy

Equations (4.13) and (4.12) give the estimate (4.10).

The reality of D, , . .. (x,p) arises because, under reflec-
tion @,— — a,(i = 1,...,n) the integrand in (4.8) changes into
its complex conjugate and du(;}—~du(a;). The bound (4.9) is
an immediate consequence of (4.13). O

Many asymptotic expansion techniques'® require that
not only Eq. (4.7) but also the z-derivative of Eq. (4.7) is
meaningful. In this direction we have a corollary of Proposi-
tion 5. Let B {)(x,y;z) and R {,,(x,p;z) denote the ith derivative
with respect to z of B, (x,y;z) and R, ,,(x,p), respectively. If
z =1t (¢t #0) the ith derivative is understood to be (3 /idt }'.

Corollary I: Let ve ¥}y, , , and K be the related bound
constant. For all zeD and n>1,

R, pmlxy;2) =
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B(')( ) M—1 (_1)n+mzn+m—i
nXy2) = ,
m-—-mgo,i—n) (”+m—1)'
quDm,n + m(x’y) + R mM(x’y’z)
The error term is O(|z]" * * ~) and has a bound
IR s (x.p32)|
Al IZanZKZ)“

aM! \ 4
[(”+M)[| T qn:KZH'

Proof: The error term R 1, (x,y;z) is the integral

(_ l)n+M 1 1 ”
—f-fdngfd"yfd £
n: 0 >
N U] ,
% (qa" )Me'bn(_a_) {Z" + Me —~ 2qa,§ M}'
dz

A little algebra shows that the derivative term in the inte-
grand has a bound (Re 2330, £}, >0)

n+ My~ 2qa,€ M
‘(ﬁz) {z }

<t + My 3 ()il ey

From here on a repetition of the argument of Proposition 5
gives the bound (4.15). O

The asymptotic expansion for the analytic semigroup
kernels U, (x,y) is obtained from Proposition 5, its corollary
and Definition 1 for F (x,y;2). If ve % 4,,, then Eq. (3.5) is writ-
ten

(4.14)

(4.15)

R ‘,ffM(x,y;z) =

— 1

E B, (x.y;z) + 2 B, (x.p;z).

n=0

Fxyp;z)= (4.16)
We find

Theorem 2: Let v(x) be a real-valued bounded and con-
tinuous potential represented by a complex bounded mea-
sure u. Let U, (x,y) and U P(x — y) be the kernels of the inte-

gral operators e ~ ¥ and e ~ ", respectively. If v(x)e.#3,,,
then for all zeD \ {0},
0) (=2
Ut = U =] S L=p )+ Bulrosal),
n=0 .
(4.17)
where coefficient functions P, (x,y) are Py(x,y) = 1,
n—1
P.xy)= Y ¢"D,.(xy) n=12,..M—1, (418
m=20
and have the x,y uniform bound
nZK 2Z\n
12l <l + LY. (4.19)

Here X is the bound constant of »(x) in 53,,. The remainder
term is of order O (|z]) and has the bound

IEM(x,y;z)Kllzljl‘l{L‘“V‘

x{(1+ %)ﬂ explz/ )

Furthermore, if v(x)e#7,, . ,, then one may take i de-

(4.20)
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rivatives of expansion (4.17) with respect to z. The ith deriva-
tive of the remainder term E,,(x,y;2) is of order O(|z|™ ~).

Proof: Start with Eq. (4.16). Assume v(x)eF 5, , , With
the bound constant K. We estimate the sum over
n=(M,...,0) of B(x,y;z). Set

Shyz)= 3 Blxyz).
n=M

From Definition 1 of B, (x,y;z), we have

B\(x,p;2)

S fsfenZie e

Using
a )’{ n, — 2a,
—|1z%
’ (az }
and (4.13) gives
(zlliplyn( 1 | gK 2)“
< —_— .
) n! \ 2| + 4
In order to estimate the sum over »n, note that for >0
and a > 0, one has

e 5] ooy

| B x.p:z

< an’ _{a expl(y/e)}™

2 s o exp{a exp{y/e)}.

This follows, since n” = exp(y In n)<exp(yne™"). Setting
¥ =3I, a = |z| ||u|| leads us to

|S x|
L+ 22 Ll exisive
lz| 4 M!

X expl |2/ Ju] expl3i/e)}. @.21)

This sum is of order O(|z|* ~ ). Itis valid for all zeD \ {0}. If
i = 0, then it is valid for all zeD and forms the second part of
the two expressions bounding E,,(x,y;z).

The M — 1 leading terms of expression (4.17) come
from the sum

M1
Lyxyz)= Y B,(x.pz).

n=20
Rewrite this sum by using (4.7) to find

M—-1M—-1—n (_z)n+m

n=0 m=0

quDm,n+m(x’y) + S}’W(x!y)z)’

where
M1
Subcyzl= S Ry . xy2).
n=0

Changing the summation index n + m-—n yields
M1 ( _ Z)n ,
Lylx,y;2) = 20 n—P,. {xp) + S plxpi2),
where P, (x,y) is given by the expression (4.18). The P, (x,p)
bound results from (4.9).
The last step is to estimate S ;,(x,y;z). Assume
v{x)eF 54, Use the bound (4.10) for R, 5, , {x,y;2).
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Cevale s Uzl ¢ IZansz)”“ g
|S“(x’y’z)|<nz=:o MM_nm\ 4
Jz1™ (1 + 2= I)ZKZ)M
<2 (el + 2=
This estimate for .S ;,(x,p;z) is the first factor in the estimate
(4.20) for E,,(x,p;z). Thus (4.17) is demonstrated if v(x)e.% 5,,.
To obtain the ith derivative of expansion (4.17), assume
vix)eF S 4 - The bound (4.21) controls |S'Y) (x,;2)|. For
S 1(x,»;2) use the estimates (4.15) of Corollary 1 to demon-
strate that S "y (x,y;z) is uniformly bounded and continuous
in x,p. Since,
| Ebxyiz)| <| Sxpiz)| + | Silxpa) |,
we have that the ith derivative of the error term E,, (x,p;z) is
of order O (|z|™ ). Lastly, note that U {”(x,y) is holomorphic
in z for all zeD and infinitely differentiable in ¢ for z = it and
t #0. Combining these facts implies that (4.17) may be differ-
entiated term by term i-times if v(x)e.F 55 , ;- a
Theorem 2 states the basic results of this paper. The
very detailed estimates in the theorem provide a method of
calculating the time evolution kernels to high order in ¢
(z = it) and have the advantage of possessing a known bound
for the total error. The results of Theorem 2 show precisely
how a 2M-times differentiable potential leads us to an M-
term asymptotic expansion of the exact time evolution ker-
nel.
The semiclassical content of the asymptotic expansion
is best seen from the diagonal form

U (x,x) =

1 M1 ( _ Z)n )

This diagonal form is uniquely defined because all the func-
tions P, (x,y) and E,,(x,y;z) are jointly continuous in x,.
From the expression (4.18) for P, (x,p), it is seen that P, (x,y) is
a polynomial of order n — 1 in the quantum scale parameter
g; hence, each term of P, (x,y) has a semiclassical interpreta-
tion. The classical component of P, (x,y), is just D, , (x,y),
whose diagonal value? is D, , (x,x) = {v(x)}". For a more de-
tailed physical interpretation of this expansion and its appli-
cations, one should consult Refs. 2 and 3.

If zeD and is not on the time axis, then expansions like
(4.22) and (4.17) have been derived for much more general
partial differential equations and boundary conditions than
we have studied here.'®*° One should note, however, that
our aim of this paper is to give the precise uniform asympto-
tic expansion of the time evolution kernel with a complete
remainder term bound, not assuming the decay of the poten-
tials at infinity. This has been accomplished by introducing a
special class of smooth potentials.
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Time evolution of the Wigner function
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In this paper we give a partial answer to the problem: When does an initially non-negative Wigner
function remain non-negative under the effect of the time evolution? We show that, for pure
states, this is the case for linear systems only; to prove this we use the fact that the Wigner function
is non-negative if and only if the wavefunction is Gaussian. We also prove that the Green’s
solution of the evolution equation of the Wigner function, which in the framework of probability
theory corresponds to the conditional probability density, takes on negative values. We utilize a
theorem, about moments, borrowed from Pawula. We conclude that the Wigner phase-space
formulation of quantum mechanics cannot receive a genuine probabilistic interpretation.

PACS numbers: 03.65 — w

1. INTRODUCTION

The existence and properties of phase-space distribu-
tion functions in quantum mechanics are closely related to
the question of its reformulation in terms of classical con-
cepts and to the existence of an acceptable classical limit.

The choice of a phase-space distribution function has a
high degree of arbitrariness, because it is equivalent to the
choice of a correspondence rule.'™ Several phase-space dis-
tribution functions have been proposed (as many as corre-
spondence rules),” but none of them gives the correct quan-
tum mechanical expectation values for all observables when
calculated through phase-space integration.**

The most widely known and employed phase-space
“distribution” is the Wigner function, which is associated
with the Weyl correspondence rule.'~® This function gives
the correct quantum mechanical marginal distributions for p
and ¢, and thus, predicts the correct expectation values for
any observableof theform F (P) + G (¢ ). However, thisisnot
the case for observables of the form F (P "Q ™); for example, if
the classical Hamiltonian is used, it gives a nonzero value for
the standard deviation of energy of the first excited state of
the simple harmonic oscillator.

Another shortcoming of this function is that, in general,
it can take negative values and it cannot be considered a true
probability distribution. For systems in a pure state it has
been shown that a necessary and sufficient condition for the
Wigner function to be non-negative is that the correspond-
ing Schrodinger state function is the exponential of a qua-
dratic form: For the one-dimensional case see Hudson,® and
for the generalization to arbitrary dimension see Soto and
Claverie’ (for the sake of completeness, let us mention that
Piquet® also considered the one-dimensional case, but his
proof was partly erroneous, see discussion in Ref. 7). Such
Gaussian functions (modulo a linear canonical transforma-
tion) are also called coherent states.” At the present time, a
similar characterization does not exist for mixed states.

Nevertheless, using the Weyl transformation and the

® Permanent address: Instituto de Fisica, UNAM (Universidad Nacional
Autonoma de Mexico), Apdo. Postal 20-364, Mexico 20 D.F., Mexico.
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Wigner function it is possible to construct in phase space an
alternative form of quantum mechanics' whose physical
meaning has not yet been clarified.

The aim of this paper is to gain some insight about the
problems of this phase-space formulation. In fact, Moyal
thought' that for the phase-space formulation to be consis-
tent, it should be possible to prove that if a state admits ini-
tially a non-negative Wigner function, then the function
evolved from it will be non-negative at any time; he gave a
*“proof ”* of this property for an isolated system with at least
one cyclic coordinate, and in a pure state; this proofis wrong,
as we shall show, and the question whether an initially non-
negative Wigner function remains non-negative was there-
fore unanswered at this stage. In this paper we give a partial
answer by proving that:

(i) For pure states only the linear systems have this
property.

(ii) For nonlinear systems the Green’s solution of the
evolution equation in phase space (which is the Weyl trans-
form of the von Neumann equation) takes negative values for
short times.

Both proofs proceed by reduction ad absurdum. The
first one uses the fact, already mentioned, that only the co-
herent states have a non-negative Wigner function. The sec-
ond one is based upon a theorem borrowed from Pawula'®'?
that deals with the properties of the moments of a probability
distribution.

The structure of the paper is the following: In Sec. II we
introduce briefly the Wigner phase-space formulation of
quantum mechanics. We refute, in Sec. II1, Moyal’s “proof *
that an isolated system with at least one cyclic coordinate
and in a pure state preserves the initially non-negative char-
acter of the Wigner function. The fact that, for pure states,
only the linear systems have this property, is proved in Sec.
IV. In Sec. V the Pawula theorem is enunciated, and using it,
we prove (Sec. VI) that for arbitrary nonlinear systems the
Green’s solution of the phase-space evolution equation takes
on negative values already for short times. The last section
(Sec. VII) is devoted to the conclusions.
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Il. THE WIGNER PHASE-SPACE FORMULATION

The Weyl correspondence rule associates with every
operator A (¢) a function a( p, g, t) in phase-space which is
given by

a(p,git) = % Tr{A (t )deu dv e?lig —Qru+ip— ?'"”]}, (1)

where integration is over all the corresponding space. If we
have another operator B (¢), it is easy to show? that

AA 1
TrAB = F ffa( Dsq,t )b (P,q,t ) dp dq’ (2)

where b ( p, g, t) is the function which corresponds to B (2).

The Wigner function is defined as the Weyl transform
of the density matrix (¢ ) divided by 4 * (Refs. 1-5); from (1)
we thus see that it has the following expression:

F(pagt)= % Tr[,?(t )ffdu dp el/Mlla =)+ (p— ?’M]. (3)

In the case of a system in a pure state, with the wavefunction
¥ (g) in configuration space, it has the well-known form giv-
en by Wigner’:

F(pgt)= %Jdv Y*g + )PP (g —lut).  (3a)

The expression for the expectation value of an operator
A () is easily deduced from the quantum expression
(4 (2)) = Tr(4p) and from Egq. (2). We get,

Ay =% fa(p,q,tww,q,t)dpdqz<a(p,q,r)>. @)

We thus see that the Wigner function has the properties of a
probability distribution in phase-space with the exception
that in general it is not non-negative. We already said in the
Introduction, that only for pure states does there exist an
answer to the question: When is the Wigner function non-
negative? This is the case if and only if the state wavefunction
in configuration space is of the Gaussian form®’

W(qlv'"qn) =exp{ - %[QTAq+ 2b¢]+c]}, (5)
where A is a complex matrix with |Re A| > 0,bis an arbitrary
complex vector, and ¢ a constant that ensures the normaliza-
tion.

The evolution equation of the Wigner function is found

by performing the Weyl transformation of the von Neumann
equation:

dp i n
-+ = — —[H}p], 6
P P [Hp] (6)
where H is the time-independent Hamiltonian. We thus get
IF (p.g;t)
ot
2 0. ﬁ( J 4 )]
= —|sin —| —,— }|H, (p.q)F(p,q,t 7a
Fin 2 (oo )|Etpartoan

P )]Hw(p,q)F(p,q,t), (7b)

where H( p,q) is the Weyl-tranformed Hamiltonian and the
notation (d /dq, 3/dp) H,, F means the Poisson bracket of the
functions H,, and F:

Jd ad )
4 Hw » F 4 yt
(ap % (Pq)F(p.q,t)

= {H,(p.9)F(p.q,t)}es

_ 2 _ﬁ_(ii
dp’ g

_ JH,(p,g) 3F(pg,t)
g Ip
_ 9H,(pq) oF (p.g;t)
Ip d
We use now the following more explicit notation of Baker'*:

(EBEAVFREIN N W
dp  Jq dq, dp, dp, 9q,
XHw(pl’qI)F(p2’q2)|pl:p1:p) (8b)

hh=49=9
and then the complete operator (2/#) sin (#%/2)(d /dp,d /dq)is
defined through the formal series expansion of the sine:

Hot(2 2o 22)

(8a)

2 \dq, dp, dp, dq,
XHw(Pth)F(Pz,%”p,:pz:p»
9 =a=q
l[ (=1
A LS n 1)
L wmal]
2 \ dq, 9p, dp, 9g,
XHw(pl’ql)F(p2’q2)|p,zp._,:p! (8¢)
a=a:=q

The evolution equation (7) can be derived in another way. We shall recall only the main steps of this derivation; for details
see Secs. 6 and 7 of Ref. 1. The fundamental relation connecting the probability distribution F( p,q,¢) and F( p,q,0) is

F(pgt)= f K (p.91Po:90:t )F ( P0,40,0) dp, dgy,

(%)

where‘K (£,9|Po,gost ) is the conditional distribution function. From (9), Moyal shows' that F ( p,q,t ) satisfies the following
evolution equation (which in fact is a particular case of the Pawula equations as we shall see later):

IF(pgt) _ &

at "o m=o nlm! E dq

> —(_—1)2( 4 )"(i)m[a,.,m(p,q)F(p,q,t)], (10)

where the coefficients ,, ,, ( p,q) are the “derivative moments” given by

@um(pg) =1im [ 17— prig — g KLELS) 4y 4
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and where
K(n¢ p.g;t) = 8(n — p)dE — g)

o tk+1
+ Z JJS (1.6 17008 (71.81(0282)S (M. |P.g) A, dE,dr, dEy, (12)
o (k+ 1)1 Jw)
with
Sm€ lp.g) = #ff[h (P +dug — 40) — h (p — Jusg + Jo)]e ~ W/Aup =+ via €0 gy g, (13)

In principle Egs. (11)—(13) could be used to find the coef-
ficients «,, ,, ( p,g), but in practice this is really hard to do;
here we already know them from the other deduction, com-
paring (10) with (7) we have

a2, m(pg) =0 ifn+ miseven, . (14a)

A, (Pg) = (— Hn - 3m— 1)/2

o) () (%)

X - o I Hw Y/
(2 o) () apa

if n + m is odd. (14b)

We remark that in this deduction the non-negativity of
the distribution function has not been assumed.

ill. DISPROOF OF MOYAL’'S ARGUMENT

In his important paper (Ref. 1, Sec. 15) Moyal made
some claims concerning the conservation of the non-nega-
tive character of the Wigner function under the effect of time
evolution. We shall now see that these claims are unfounded.
Moyal’s statement was the following: An isolated system
with at least one cyclic coordinate @ and in a pure state pre-
serves the initially non-negative character of the Wigner
function. The argument (Ref. 1, Sec. 15, p. 117) goes as fol-
lows:

(a) A canonical transformation is made from the origi-
nal coordinate system p,,q; to the system (g, 8, P,,Q,), where
g is the conjugate of € and P;, and Q, are the other (trans-
formed) moments and coordinates. The transformed Hamil-
tonian H (g, 6, P,,Q;) is then such that

ot =0 oH = const = w. (15)

ao Jdg

(b) The evolution equation (7) is written in the (g, 6,
P,,Q;} system.

(c) @ being a constant, the evolution equation [taken
under form (7b)] can be written

oF (g,0,P;,Q;,t) OF (8,6,P;,Q;,t)
+ w
at ae

+ 2 [sin % ( 3‘;— "a% )]H(g,G,P,,Qi)F .0,P.,0,) = 0.

#
(16)

(d) In Eq. (16} the variables ¢ and & can be separated
from the others through the substitution

F(g,6,P,Q,,t) = F\(0,t)F,(8,P,Q) (17)

which gives the following two equations:
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1 [aF61)  OF(6.1) .
= 2iu, 18
Fonl a 20 “ (18a)
1 [ fi( Jd 4 )]
——|sin — | — ,—
FeP0) " 2\ 3P 30
X H (8,6,P,,0,)F,(g,P,.Q,) = {'—u, (18b)

where p is a separation constant
(e) Solving (18a) we find that the time dependence is of
the form

expliu(t + 8 /w)], (19a)

Comparing this time dependence with the expansion of
the Wigner function in energy eigenfunctions (see formula
8.1 of Ref. 1) we find

F(g’e’Pi’Qi) = Za}kak(g)Pi’Qi)

sk

Xexp(iEf ;E" (t-+— 4 )) (19b)

[

where a; are the coefficients in the expansion of the wave-
function in energy eigenfunctions y; and the F;, ( p,g) are
defined as follows (see formula 4.11 of Ref. 1):

1
h n
Xexp( ;1 p-v)t//k (q — %v)dv.

From (19b) Moyal concludes that if F> 0 whatever 9 at
t = 0, it must be non-negative for all > 0.

This “proof” is wrong due to the following two mis-
takes:

(1) The first and most serious mistake occurs in step (b),
where Moyal writes the evolution equation (7) in the canoni-
cal transformed system ( ¢,6,P;,Q;), which amounts to as-
suming that Weyl’s correspondence rule is covariant with
respect to canonical transformation over the classical phase-
space. But this covariance just does not hold (whatever quan-
tization rule is assumed), as shown first by Van Hove (Ref.
14, Chap. VI, Sec. 23}, so that the evolution equation (7) is
valid only in terms of the usual Cartesian coordinates P,,Q,
(see Sec. 6, p. 105 of Ref. 1). The reader may easily build for
himself an illustration of this situation by treating a two-
dimensional harmonic oscillator, first in Cartesian and then
in polar coordinates.

{2) Even if step (b) were correct, the proof would still be
wrong because step (c) is also erroneous. In this step,  is
considered a constant, independent of the coordinates and

Fepa = =L | vrla+ +v
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moments, and this is not generally true. Of course, it is a
constant of motion, but, except for the case of the harmonic
oscillator, it is not constant with respect to the variables of
the system. Therefore, as a general rule, nonzero derivatives
of dH /dg = w would be generated by the operator (2/A ) sin
[(h /2)(8/3p,8/3q)] of Eq. (Tb), and these derivatives are lack-
ing in Eq. (16). Only for a linear system (harmonic oscillator)
would @ be a genuine constant. In actual fact, for such a
system, the evolution equation for the Wigner distribution
function just reduces to the usual Liouville equation, as may
be deduced from Egs. (14), and this equation actually pre-
serves the non-negative character of the distribution func-
tion. From the analysis presented in this section, we may
therefore conclude that Moyal’s statement holds true for the
trivial case of the harmonic oscillator, but, owing to the in-
correct character of his proof, the question remains open, at
this stage, as concerns the general case (nonlinear systems).
We shall see in the next section that, for nonlinear systems,
the answer is actually negative.

IV. THE PURE STATE CASE

In this section we consider only systems in a pure state.
We prove that only the linear systems have the property that
if at the initial time (taken here as 0) they are in a state with a
non-negative Wigner function, then this function will be
non-negative for all positive times; or equivalently, that if we
have a nonlinear system with initial condition:

¥ (q,0) =exp{ — i[q'Aq + 2b-q + ¢]}, (20)

where A is a complex matrix with [ReA|> 0, b an arbitrary
complex vector, and ¢ a normalization constant. Then for
any time ¢ > O (with the possible exception of a discrete set of
times) the Wigner function will take negative values. This
result may be considered as a generalization of a similar
property proved by Guichardet for coherent states, through
very different methods (see Ref. 15, Chap. 2, Sec. 2.2, Lem-
mas 2.1). The connection between Guichardet’s result and
ours deserves some developments, which are presented in
the Appendix.

We know®” that for the Wigner function to be non-
negative at any ¢ > 0, the wavefunction must be of the form

¥(q,t)=exp{ —}[q"Al)g + 2b(t)-q +c(£)]},  (21)
with A (¢), b(¢ ), and ¢(¢ ) complex functions of time and
|ReA(z)| >0 forall t>0.

Thus, we must find which are the systems that have (21)
as solution with initial condition (20). For that purpose, we
substitute (21) in the Schrodinger equation with an arbitrary
potential ¥'(q) and we find the following equation (the Ein-
stein summation convention is used):

ﬁz 2 . ﬁ N 2 . o
Z pt) —t?A(t)Lq,- g + [%A" i) —zﬁb(t)]iq,.
# 2 . .
+ [ T - Zﬁ—m TrA(t) —i gc(t)] = V(q) (22a)

with initial conditions
A(0) = A, b(0) =Db, and ¢{0) = c. (22b)

Since the powers of the g,’s are linearly independent,
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this equation can be satisfied at any time if and only if
V(a) = @;q9.9, + B.q; + 7, i.e., if the system is a linear one,
which is the announced result.

V. THE PAWULA THEOREM

Pawula'®'? has derived generalized Fokker—Planck
equations for the conditional probability density functions of
arbitrary random processes and found the conditions under
which these equations are of finite order. In this section we
expose his resulits.

Let y(¢ ) denote an M-dimensional vector whose com-
ponents are the M random variables y,(t) (i = 1,..., M) be-
longing to different random processes, and let p(y, ¢ |Y,T') be
its conditional probability density function conditioned by
an arbitrary set (Y,T) of k values Y with £ times of occur-
rence denoted by T Thus, Y stands for {y"", y?, ..., y*'} and
T'stands for {t'V, ¢, ., ¢t ™)},

For ¢ ¢T, the transition probability density function sat-
isfies the following generalized Fokker—Planck equations:

9 _ 5 [y
atP(y,t|Y,T)—"W%=o[£[1 n,! (8y,~)]

(Z79)
[44 Pyt [Y.T)], (23)
where the derivate conditional moments are
AFr = lim —E
UM a0t At
M n
[T+ an—yopvaxr)), o9
i=1

where the superscript + (resp. — )in A * corresponds to
the choice of the limit 4z—0"{resp. 4t—07).

Here some words of explanation are needed in order to
prevent confusion. The A * coefficients correspond to the
familiar Fokker-Planck equation of the theory of Markov
processes (“forward” equation), but the 4 ~ coefficients do
not correspond to the so-called backward equation (see, e.g.,
Arnold, Ref. 16, Chap. 2). Indeed, the backward equation
for Markov processes has the same coefficients 4 *, but in
front of the derivation operators instead of lying inside. The
A ~ coefficients correspond to the Fokker-Planck equation
for the time-reversed process. (See Nelson, Ref. 17, Chap. 13.
Our 4 * coefficients correspond to Nelson’s b and D, while
our 4 ~ correspond to Nelson’s b * and D *). For the sake of
definiteness, we shall consider from now on the usual
Fokker-Planck equation, i.e., the 4 * coefficients (corre-
sponding to 4t—07), and we therefore shall omit the +
superscript.

We now consider conditions under which Eq. (23) is of
finite order in the variables y,; these conditions are given by
the so-called Pawula theorem.

First of all, we must define the one-dimensional deri-
vate moments U') (i =1, 2,.., M):

U = lim L E

A0 At
X [{yi(t+At)_yi(t)}"ilyi’t;yli]’T[i]]1 (25)
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where #7|,)C T and T};;C Y. It is easy to see that
Ul =E [4oo..my.o Wit Y1 T ] (26)

where E [4 |y,,1;Y},,T;,] means that averaging of 4 has
been performed with respect to y;(j #) and all variables y'*' of
the set Y except those belonging to the subset Y|, (hence, the
result can depend only on the subset of times T}, corre-
sponding to the subset Y|,;). We can now state the:

Pawula theorem: If each of the one-dimensional deri-
vate moments U ',? is finite and vanishes for some even n;,
then

A, ., =0 (with probability 1) (27)

Ryyeey

for every set {n;} such that =  n,>3.

We finish this section with two remarks about this
theorem:

(i) it is independent of any derivation of Eq. (23); (ii) it is
valid for moments in general and not only for derivate mo-
ments as has been enunciated here (see Lemma 1, Sec. III of
Ref. 11). It is therefore a theorem about moments in general.

VI. THE GREEN’S SOLUTION OF THE EVOLUTION
EQUATION

Let us analyze the relations of the Moyal evolution
equation (10) and the Pawula equation (29). First we remark
that the function X { p, ¢ |p§,q¢;t ) [Eqgs. (9)-(13)] is the distri-
bution function F( p, g, t ) which corresponds to the initial
condition F( py, g4, 0) = 8( po — P )8(g — g4), i.e., it is the
Green’s solution of Eq. (10).

Comparing (10) and (11) with (29) and (30) we see that if
K (p, q|ps.9s;t ) is a true probability density, then Moyal’s
equation (10) is a particular case of Pawula’s equation (29)
and we can utilize the theorem of the preceding section; thus
we suppose that K ( p, g| po, 4o; t ) is a true probability density,
i.e., that K ( p, q| po, go; t ) is non-negative for all ¢.

From Egs. (14) and (26) we have

vr =U% =0, n=1, 2, 3,., (28)

i.e., all the even one-dimensional moments vanish. Also
from (14) and (26) we see that the odd one-dimensional mo-
ments do not necessarily vanish and we can suppose that for
real physical systems they are all finite. Thus, all the condi-
tions required for the application of the Pawula theorem are
fulfilled, and we must have, from Eq. (27), a,, ,,,(p, g) = 0 for
all n, m such that n + m>3. Going back again to Eqs. (14) we
see that only the linear systems satisfy this condition; thus
for nonlinear systems we have a contradiction, whose solu-
tionis that the hypothesis made about X ( p, q|p,, go; ¢ ) isfalse;
in other words, K ( p, g|po, 4o; ¢ ) is not a true conditional prob-
ability density. Then we have two alternatives:

(i) K (p, q|pos 9o; t) s not normalizable;

(ii) K ( p,g|pos go; t ) takes on negative values.

The first one must be rejected because it implies that the
moments «,, ,,( p,g) would be infinite and this is not the case;
thus we have only the second alternative, i.e., K ( p, g|po. 9o t )
is not non-negative.

We remark that, strictly speaking, this conclusion has
been established for short times only, because it has been
deduced from a property of the derivate moments, which are
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defined in the limit /—0.

Another remark is that this result is valid for an arbi-
trary number of dimensions and for both pure and mixed
states.

Finally, the fact that K ( p, ¢|po, ¢o; t ) takes negative val-
ues for short times does not automatically imply that the
Wigner function has the same property. In actual fact, from
(9), we see that an integration is involved, and we do not
know yet when this integration gives a negative value.

VIi. CONCLUSION

We conclude that the Wigner phase-space formulation
of quantum mechanics is not probabilistically consistent. Al-
though for the general case we have not shown that the
Wigner function will lose its initially non-negative character,
the fact that its evolution kernel [Eq. (9)] can take negative
values is enough for drawing the conclusion above.

We may distinguish a “static” and a ‘““dynamical” as-
pect in the “non-positive” character of the Wigner function:
the static aspect refers to the fact that the Wigner function
corresponding to some given quantum state may be non-
positive, while the dynamical aspect refers to the fact that,
even if we take some non-negative Wigner function, we may
lose this non-negative character under the effect of the time
evolution governed by Moyal’s Eq. (7) (itself deduced from
the von Neumann evolution equation through the Weyl cor-
respondence rule). The dynamical aspect may be considered
as still more important than the static aspect because, even if
we find some non-negative Wigner distribution, this non-
negative character is not kept under time evolution. The im-
portance of this issue was clearly appreciated by Moyal {Ref.
1, Sec. 15), but the fact that the quantum law of evolution
implied a negative answer (i.e., nonconservation of the posi-
tive character) was not at all evident, as shown by the fact
that Moyal attempted (without success, as we showed in the
present work) to prove the opposite property.

Finally, we want to emphasize that, due to the general
character of the Pawula theorem, the proof given in Sec. VI
may, at least in principle, be extended to any of the phase-
space formulations given by Cohen.”
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APPENDIX: CONNECTION BETWEEN THE
CONSERVATION OF THE POSITIVE CHARACTER OF
THE WIGNER FUNCTION UNDER TIME EVOLUTION
AND THE PROPERTIES OF COHERENT STATES

This appendix discusses the relationship between the
results of our Sec. IV and some properties of coherent states
as formulated by Guichardet.'” The mathematical develop-
ments provided by this author are based upon the so-called
“symmetric Hilbert spaces” SH (more familiar to the quan-
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tum physicist under the name of “Fock space”) associated
with a given Hilbert space H, and these developments may
look at first sight rather unrelated to the present work. We
therefore feel it appropriate to describe in a sufficiently de-
tailed way the connection between his work and ours. First
of all, it must be recalled that the usual Hilbert space L ? of
the functions of one variable may be considered as a “‘sym-
metric” (Fock) Hilbert space built from the one-dimensional
space R ' (the set of the real numbers) (see Ref. 15, Example
2.1), and similarly the space of the functions of n variables
(possibly with some prescribed symmetry) will be considered
as a “symmetric” (Fock) space built from the n-dimensional
space R ". This property enables us to apply Guichardet’s
general results to the usual n-particle Hilbert space of quan-
tum-mechanical wavefunctions. The so-called coherent
states, denoted EXP a are introduced (Ref. 15, Definition
2.2}; in the one-dimensional case, after multiplication by the
“basic measure” exp ( — y°/2), they just become Gaussians
with arbitrary centers (but standard deviation fixed to unity),

exp( — y*/2)EXP(a)
= exp( — y*/2)explay — a*/2) = exp| — (y —a)*/2].
The problem is now to find the group &, of the unitary
operators which leave globally invariant the set of all coher-
ent states (possibly multiplied by some arbitrary constant).

The answer is precisely provided by Lemma 2.1 of Ref. 15:
%,, is made from the operators

Ujpe =cUp UA,O,I'

(1) ¢ is a complex constant with modulus 1.

(2) U 0,1 denotes the natural extension to the symmetric
Hilbert space SH of the unitary operator 4 acting on the
basic Hilbert space H, namely

U,,.(EXP a) = EXP(4a)

{since, in our case, H = R ", A is just a familiar finite-dimen-
sional unitary transformation). Note that 4 does not act
upon the variable y of the Gaussian function EXP a, but on
the parameter g which defines the center of the Gaussian.

(3) Finally, U;,, (where & denotes an element of the
basic Hilbert space H ) is defined through

U (EXPa) =exp[ — i||b ||> — (a|6)]EXP(a + b),

i.e., U,,, realizes an arbitrary translation (with translation
vector b ) of the center a of the Gaussian function [the scalar
factor in front of EXP (@ + b ) merely preserves the normali-
zation].

To sum up, apart from the multiplication by some con-
stant ¢ (with modulus 1), the unitary transformations map-
ping coherent states onto coherent states just correspond to
an arbitrary displacement of the center of the Gaussian asso-
ciated with the coherent state (U, corresponds to rota-
tions, U, ,,, to translations). Now, all such mappings may
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precisely be generated by the evolution operator exp (iHt )
where H is the Hamiltonian of the harmonic oscillator
whose ground state is the basic Gaussian measure exp

( — y*/2), and no other Hamiltonian may exhibit the same
property. Indeed, the set of coherent states spans the whole
symmetric Hilbert space (SH = L ?). Thus, an evolution op-
erator exp (iHt ), and hence, its infinitesimal generator iHz, is
entirely defined by its action upon the coherent states, and
therefore, if some mapping may be expressed as exp
(iH,,,m! ) where H, . is a harmonic oscillator Hamiltonian,
no other Hamiltonian may generate just the same mapping.
We are thus led to the following conclusion as a corollary of
Guichardet’s Lemma 2.1: Any evolution operator which
changes coherent states into coherent states (corresponding
to some given basic harmonic Hamiltonian H, ) just corre-
sponds to the evolution generated by this basic harmonic
Hamiltonian, 1.e., it is of the form exp (iH,,m ? ). In our Sec.
IV, we derive just the same conclusion, but from less restric-
tive assumptions, since we only assume that Gaussian func-
tions are changed into Gaussian functions without requiring
that initial and final Gaussians have the same dispersion, i.e.,
without assuming that they are coherent states of one and the
same basic harmonic oscillator.
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The one-dimensional Schrédinger equation can be written as a first-order multicomponent
equation by considering i and dv/dx, or combinations thereof, as independent variables. A
potential barrier is then represented by a matrix belonging to one of the homomorphic groups
SU(1,1),80(2,1), Sp(2,R ), or SL(2,R ). The relationship between these groups is clarified. In various
applications, one of them may turn out more convenient than others. In particular, SO(2,1), which
is obtained by using as a basis some bilinear combinations of ¥ and diy//dx, leads to remarkable
results: The Schrodinger wavefunction is represented by a trajectory on a unit hyperboloid; a
periodic potential corresponds to a pseudorotation around a fixed axis; a random potential gives a
random walk on the hyperboloid. This method can also be used to calculate bound states (in
potential wells) and may have many other interesting applications.

PACS numbers: 03.65. — w, 02.20. +b

I. INTRODUCTION

One-dimensional physics' is a convenient theoretical
laboratory to test analytical and numerical methods before
applying them to the real world.

In this paper, group theory is used to discuss some pro-
perties of the one-dimensional time-independent Schro-
dinger equation

(—#/2my" + V(x)y = Ey. (1)

A potential barrier (or potential well) is represented by a
transfer matrix belonging to one of the four (homomorphic)
noncompact groups” SU(1,1), SO(2,1) Sp(2,R ), and SL(2,R ).
The relationship between these groups is clarified, and it is
shown that in various applications one of them may turn out
more convenient than the others.

The outline of this article is as follows. In Sec. II, we
write ¢ as the sum of forward and backward amplitudes.
These amplitudes can then be used as a basis to define trans-
fer matrices, belonging to the two-dimensional representa-
tion of SU(1,1). Section III discusses the infinitesimal gener-
ators of the SU(1,1) group and the resulting finite
transformations. Higher-dimensional representations are
introduced, leading to the homomorphic group SO(2,1). The
latter has a special status in this work, as shown in Sec. IV:
The Schrodinger wavefunction can be represented by a tra-
jectory on a unit hyperboloid, involving only two real first-
order equations (the third variable, a phase, has been elimin-
ated). Section V is devoted to transmission through
disordered chains, a topic of high current interest. In Sec. VI,
we examine the effect of arbitrarily shifting the zero of the
energy scale. The total energy must however remain positive
(as in all the preceding sections). Negative energies, in parti-
cular bound states, are discussed in Sec. VII. They involve
representations of Sp(2,R ). Finally, Sec. VIII presents a for-
malism based on SL{2,R ) which is valid for both positive and
negative energies, at the cost of using expressions which are
not dimensionally homogeneous.

Throughout this paper, scalar products are defined,
which involve various indefinite metrics. The resulting
transfer matrices are not normal (they do not commute with
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their adjoints) but “pseudo-normal” with respect to the ap-
propriate indefinite metric. Some properties of pseudo-nor-
mal matrices are briefly reviewed in Appendix A, and some
properties of “average” transfer matrices are discussed in
Appendix B.

Il. FORWARD AND BACKWARD AMPLITUDES

For a free particle, ¥ = 0 and E > 0, the solution of Eq.
(1) is

¢ — Feikx + Ge— ikx, (2)
where F and G are constants and
k= (2mE)"*/#. 3)

The first term in (2) is the forward amplitude (positive x di-
rection); the second one is the backward amplitude. This
decomposition of 3 can be generalized for arbitrary ¥ ( x).
Define

=W+ ¢/ik)/2 (4a)
and
g=W—y'/ik)/2, (4b)

with k still given by Eq. (3). (This decomposition is similar to
the one used for the Klein-Gordon equation by Feshbach
and Villars,? and it will likewise lead to the introduction of
an indefinite metric.) It is easily seen that, for ¥ = 0, we have
f= Fe**andg = Ge ~ **. For V #0, the physical meaning of
fand g is illustrated by Fig. 1. However, it must be pointed
out that the decomposition ¢ = f + g is not invariant under a
shift of the energy scale

V—»V+4, E—E+ 4, (5)
although the Schrodinger equation (1) is, of course, invariant
under this rescaling. This problem will be discussed in Sec.
VI and the case E <0 in Sec. VIL

Differentiating (4) with respect to x and using (1), we
obtain

fl=ik [ f—(f+gV/2E], (6a)
g=—iklg—(f+gV/2E] (6b)
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FIG. 1. The physical meaning of fand g can be understood by making a
narrow “cut” in the potential ¥ (x), namely assuming ¥ (x) = O in a small
segment of length 8. (This is somewhat analogous to the old-fashioned way
of defining E and D in a dielectric by cutting small cavities of various
shapes.) This procedure leaves ¢” finite, and therefore does not affect i nor
¥'in the limit 5—0. Inside the “cut,” Eq. (2) holds exactly, and Fe™* and
Ge ~ ** are equal to the local values of fand g.

These equations can be simplified by introducing a two-com-
ponent object

v=('), )

a dimensionless potential

u(x)=V(x)/E, (8)
and a dimensionless length parameter
t= — kx (%)

(the minus sign for later convenience). Differentiation with

respect to ¢ will be denoted by a dot, as if # were the time (this
cannot cause any confusion, since our problem is time inde-
pendent). With these notations, we obtain

r 1—u/2 —u/2 )
= 10
w ( w2  —1+u/2 10
or
i = [(1 —u/2)o, — (u/2ic, | ¥, (11)

where 0, and o, are the standard Pauli matrices. (Of course,
no spin is involved in this problem.)

If we think of 7 as the time, the operator on the rhs of (11)
is the “Hamiltonian,” and at first sight it is surprising that
the latter is not Hermitian. However, we must remember
that we are not discussing a time evolution (where we would
expect f| f+ g|?dx to be constant) but the spatial depen-
dence of forward and backward amplitudes. The conserved
quantity is the total current density*

J=(#/2im)gy’ —'Y), (12)
which can be written, by virtue of (4) and (6), as

j=fk/m\|f|* — |g*) = (ik /m)¥ o, ¥. (13)
It is convenient to normalize j as #ik /m so that

Ylo,w=1. (14)

We see that o, plays the role of an indefinite metric® for the
normalization of ¥.

With this indefinite metric, the “Hamiltonian (11) is
pseudo-Hermitian, because

(io,)" = a,(io)o,. (15)
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(In this paper, the prefix “pseudo” will be used to mean:
“with respect to the indefinite metric being used.”’) For finite
t, Eq. (11) generates a pseudo-unitary transformation

Yit)=A(r)¥(0), (16)
where the transfer matrix 4 () can be written as®>™®
M N)
At)= — 17
o=y (1)
with
IM|*~ |N|*=1. (18)

Therefore, 4 (¢ ) belongs to the SU(1,1) group.?

The physical significance of the coefficients M and N is
illustrated by Fig. 2. We have a barrier penetration problem,
where the transmitted amplitude ¥ = ¢* ™~ has been nor-
malized in compliance with Eq. (14). We write the incoming
plus reflected amplitude as ¥ = Me'** —*) 4 Ne —#*x— %)
and current conservation ensures Eq. (18). The explicit val-
ues of M and NV for a given barrier can be obtained by inte-
grating the Schrodinger equation (1) or (10), starting from
the known value of ¥ at x = a and proceeding toward x = b.
[Going in the negative x direction is like going in the positive t
direction. This is the reason it was convenient to put a minus
sign in Eq. (9).] We thereby determine the first column of Eq.
(17). The second column is then obtained by replacing ¥ by ¥
(this corresponds to a time reversal, i.e., to a pure incoming
wave at x = a).

If there are several potential barriers with transfer ma-
trices C, B, A, say (in that order, from left to right) the overall
transfer matrix is CBA. Note that the transfer matrix of an
“empty” region (¥ = 0) of length L is

e—ikL 0
=" ) (19)

An important case is when the same barrier is repeated
n times (for infinite n, we would have a periodic potential).
The behavior of 4 " for large n is controlled by the eigenval-
ues of A. The characteristic equation for the matrix (17) is

A2—A(M+M)+1=0. (20)

Three cases must be distinguished, depending on the value of
M + M = TrA (which is in general a function of E).

If |ReM | > 1, we may write ReM = 4+ cosh(@ /2) and
the eigenvalues of 4 are A, = + e?/?and A, = 1/4, (in the

Vix)

. Me'k(x-b) eik(x-0)
\P_( Ne -ik (x-b) V- ( 0 )

o] b 1} 3

FIG. 2. A plane wave impinges at b on a potential barrier with compact
support b<x<a. The transmitted part is normalized to unity at x = a. The
incoming and reflected amplitudes at x = b are M and ¥, respectively. The
transmission probability is | M |~ and the reflection probability [N /M |
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next section, it will become clear why we write 8 /2 rather
than simply ). The largest eigenvalue of 4 " thenis + e"®/%
implying that the matrix elements M and N grow exponen-
tially with n. The transmission probability of the barrier,
|M | ~2, decreases as e ~ "

On the other hand, if |ReM | < 1, we may write ReM

= cos(f /2) and then A, = 1/4, = /2. The eigenvalues of
A" thus are e £ "9/2_If @ /1 is rational, there will be some
finite n for which A * = I. If not, there will still be finite # for
which 4" will be arbitrarily close to the unit matrix (see
Appendix A). Therefore, the transmission probability oscil-
lates and (quasi-) periodically returns to 1 as » increases. The
energy E is said to be in a conduction band (the preceding
case corresponds to a forbidden band, but it is really forbid-
den only for infinite 7).

Finally, in the exceptional case |[ReM | = 1, the matrix
elements of A4 ” grow linearly rather than exponentially with
n, see Eq. (A7).

From Egs. {17) and (18) we obtain

"D
= =g,4'0,. 21
4 (_N )= (21)

Therefore, A is pseudo-unitary (with respect to the metric 7, )
and in particular is pseudonormal. Some properties of pseu-
donormal matrices are discussed in Appendix A.

lL. INFINITESIMAL GENERATORS AND FINITE
TRANSFORMATIONS

An SU(1,1) matrix very close to the unit matrix / can be
written as

A~ — 5, & — 541 + 577, (22)
where the real numbers &, 77, 7 are very small, and

01

Sx = %(1 o)’ (23a)
0 —i
i 0 )

=1 . 23c
sT i(o _ l ( )

It is convenient to define a “vector”’8 = (&,1,7) and to write
$0=— 5§ — 5y + 577 (24)

The signs in (24) have been arbitrarily chosen (for later con-
venience), but no sign convention can alter the fact that the
three commutation relations

[SxsSy] =57 {25a)
[sysS7] = —Sxs (25b)
[s7s5x] = — Sy, (25¢)

must have different signs on their right-hand sides.
Note that the s are pseudo-anti-Hermitian with respect
to the metric o,,

ST = — 0,80, (26)
and that their anticommutators are
5,5, + 8,8, = — G, /4, 27)

1112 J. Math. Phys., Vol. 24, No. 5, May 1983

where

Gy =Gyy= — 1, (28a)

Grr =1, (28b)
and the other G,,, = 0. It follows that

(s = — 6%/4, (29)
where

0*=gG,,0,.0,=7—-E*—7p (30)
A finite transfer matrix can now be written as

exp(s*0)=1 4+ (s°0) + (s*0)>/2! + (s-0)>/3! 4 .. (31)

= cos(8 /2) + sin(0 /2)(s-6/6), (32)

by virtue of (29). Comparing with (17) and (23), we obtain

M = cos(6 /2) + sin(@ /2)(iT/6), (33a)

N= —sin(@/2){¢ + in)/6. (33b)

These formulas are convenient when 82> 0, i.e., [ReM | < 1.
This is the conduction band, as defined in the preceding sec-
tion. If 2 < 0, oneshould replace cos(6 /2)by cosh(|6 | /2)and
sin(6 /2)/6 by sinh(|& |/2)/|@ |. In the exceptional case
67 = 0, one simply has exp(s-0) = 1 + s-0 [see Eq. (A6)].
We now arrive at the main point of this article. The
commutation relations (25) can be realized not only by 2 <2
matrices, but also by matrices of higher dimensionality, for
example

0 0 1

sy=|o o o} (34a)
1 0 0
0o 0 o0

sy=[0 o -1} (34b)
0 -1 0
0 —1 0

sp=|1 o o} (34c)
0 0 0

The basis for this three-dimensional representation of
SU(1,1)—or, as we shall see, of the homomorphic group
SO(2,1)}—must be bilinear in the one used hitherto (namely f
and g), just as the vectors acted upon by the ordinary rotation
group SO(3) are bilinear in the two component spinors which
are the basis for SU(2).

This can be seen as follows. Define a “vector’
R = (X,Y,T) by’

X=Fg+/8 =0 — 2, (35a)
Y=i(fg—f8) =W+ P2 (35b)
T=Ff+88 =@+ P2 (35¢)

It is straightforward to verify that an infinitesimal
transformation

Vo' =V 4 (s0)¥ (36)
indeed yields
R—>R' =R + (S-O)R, (37)

where S+0 is defined as in Eq. (24).
Here, one may be tempted to define a fourth component
of Ras Z =ff— g g, however, Z = 1 by virtue of (14). For
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the same reason
TP X _yi=1, (38)

i.e., the vector R is constrained to lie on the upper sheet of a
unit hyperboloid (Fig. 3).

We now see that the tensor G,,, of Eq. (28) is the inde-
finite metric of the R space. The relevant group is SO(2,1). Its
representations have been discussed extensively.'® This
group has many applications in physical problems, such as
collective motions in a nucleus,'! superfluidity,'? coherent
states,'’ large-N expansions in quantum mechanics,'* and,
of course, as a subgroup of the Lorentz group. I shall hence-
forth freely use the “relativistic” terminology, although the
problem discussed here has nothing to do with the theory of
relativity.

Finite pseudorotations can be written as exp(S+8), just
as in Eq. (31), but now there is no simple formula like {29) to
go over to Eq. (32). Rather, we shall use a method similar to
the one giving the matrix for a finite SO(3) rotation.'* We
define a vector product in (2 + 1)-Minkowski space as
follows:

0 X R=(S-0)R, (39)
or, explicitly,
OXR=(—£T — 7Y, T + 7X, — EX + 7). (40)

Note that 0 X 0 does not vanish, i.e., 0 is not invariant under a
pseudorotation through an “angle” 0. Rather, the invariant
vector is

0 =(-m—5&7) (41)
|

exp(S*O)R=R+ (OXR} + (0X(O0XR))/2+

T= S1exEey?

arcton (tanh X)

FIG. 3. The unit hyperboloid 7> - X? — ¥? = [ with a trajectory resulting
from a uniform pseudo-rotation around the invariant vector €', In this
drawing, 8 is timelike and the trajectory is an ellipse. For spacelike 6, the
trajectory would be a hyperbola.

It satisfies

(@) =8, (42)

0x0 =0, (43)
and

02 =02 (44)
A direct caluclation then shows that

8X(0XR)= — 6°R + 0'(6"R) (45)
and

0X(0X(0XR)) = — 020 XR). (46)

The last equation is formally identical to that for the Euclid-
ean vector product, and we can therefore write!®

— 6B XR)/3! — 620X (0XR))/4! + - (47)
=R+ (sind /8)(0XR) + [{1 — c0os8)/0?]0X (0 XR), (48)
= cos6R + (sinf /0 )(OXR) + [(1 — cos)/0>]0'(0"R). (49)

[Asusual, if @ * < 0, we replace cos@ by cosh|@ | and sinf /@by sinh |6 | /|6 |. If 92 = 0, only the first three terms of (47) appear. ]
We thus finally obtain the explicit form of the SO(2,1) transfer matrix:

(50a)
—n*C+cos® —E&nC—18 —yrC—E&
A=exp(SO) =] —&nC+7S —£E?C+cosé —ErC+ S|, (50b)
77C — £S ErC+ 7S 7°C + cosf
|
where We thus obtain the equivalent expression
§ =sind /6, (51) Re(M?+N?) —ImM2+N?  2ReMN)
and A=]|ImM?—-N?  ReM?>-—N? 2Im(MN)
C=(1 — cos6 /6 >=2sin*(0 /2)/6*. (52) 2Re(MN ) —2ImMN)  |M|*+|N]?
{
Now, by virtue of (33), it is also possible to write i >3
This result could also have been obtained directly from (35)
§S= —2ReMReN, {53a) and the transformation f —M f + Ng and g—N f + Mg [see
7S = —2ReM ImN, (53b)  Eq.(17)}.
7S = +2ReM ImM, (53¢) the that the 7T compor'lept in (55) is always larger
' than unity, because of (18). This is a general property of Lor-
with similar expressions for £ *C, etc. Also entz transformations. Another general property,
cosf = 2cos*(6 /2) — 1 = 2(ReM )* — 1. (54) detd =1, (56)
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is due to the fact that we have a continuous transformation
generated by the traceless matrices (34). Moreover, it follows
from (50) and (51) that

Trd =14 2 cosf (57)

(or1 4 2cosh |6 |if@* <0.) Wecan thereby find all theeigen-
values of A = exp(S-0): One of them must be unity, corre-
sponding to the invariant eigenvector 8’ [see Egs. (39) and
{43}]. It then follows from the characteristic equation

det(4 — AI') = O that the two other ones are A, = ¢ or

+ ¢!, and A, = 1/4,. The discussion then proceeds just as
after Eq. (20). If

—1<Trd <3, (58)

the energy is in a conduction band; otherwise, it is in a forbid-
den band.

IV. SCHRODINGER EQUATION ON THE UNIT
HYPERBOLOID

In this section, we shall write the one-dimensional time
independent Schrédinger equation in terms of the real “vec-
tor” R = (X,Y,T), defined by Eq. (35). The ‘“Hamiltonian”
will be a real 33 matrix, similar to the pseudo-Hermitian
“Hamiltonian” (11) used for the “spinor” representation (7).
Indeed, Eq. (11) can be rewritten, by virtue of (23), as

V= —usy —(2—ups |V (59)
Likewise
R=[—uS, — (2 —u)S;]R, (60)

as can be directly checked from (1) and (35). The “angular
velocity”

0 2—u O
= —uSy —2—-usSr={u-2 0 ul (61)
0 u 0

is a pseudo-antisymmetric matrix, namely it is antisymme-
tric with respect to the indefinite metric G, defined by Eq.
(28). The conserved “length” is T2 — X?> — Y? = 1 [see Eq.
(38)].

The eigenvalues of £2 are 0 and 2 (u — 1)'/%. The invar-
iant eigenvector satisfying 126" = 0O is

0 = (u,0,2 — u), (62)

up to a normalization factor. From (62) we have

0’2 = 4(1 — u). Thus, if u < 1 (i.e., ¥ < E, the classically al-
lowed region), 8’ is “timelike”” and the nonnull eigenvalues of
{2 are imaginary. On the other hand, foru > 1 (i.e, V> E), 0’
is “‘spacelike” and the nonnull eigenvalues of {2 are real.
Note that these properties cannot be affected by a shift of the
origin of the energy scale.

These results can be visualized as follows. The antisym-
metric part of the matrix £2 is a Euclidean rotation in the XY
plane (around the timelike 7 axis) with angular velocity
(2 — u). The symmetric part is a Lorentz boost in the YT
plane (around the space like X axis) with acceleration ». The
Schrodinger equation can therefore be interpreted as a com-
bined rotation and boost of the representative point
R = (X,Y,T) on the unit hyperboloid

T=(1+X%+ Y32 (63)
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As we see from Eq. (61), £2 consists of a part proportion-
altou = V/E,and apartf2, = — 25, causing a rotation of
R even in the absence of a potential. This free rotation can be
eliminated by using a rotating coordinate system, in a way

3., b6,

similar to Dirac’s “‘interaction picture.” Let

=102+ uf2,, (64)
where £2, =S5, —S,. Then
R =exp( — £2¢)R (65)
satisfies
R’ = u exp( — 2,1 )2, exp(£2,t R’ (66)
0 —1 — sin2¢
=u 1 0 cos2t IR’ (67)
—sin2t  cos2t 0

This equation, which is exact, may conveniently be used as a
starting point for a perturbation expansion, if u is small.

It is also possible to give the Schrodinger equation a
remarkably simple form®'® by introducing polar coordi-
nates y and ¢ (see Fig. 3), thereby eliminating the constraint
(63). Let

T = coshy (68)
and

X + iY = sinh y €*. (69)
We obtain from {60}, or directly from (1) and {35),

x= using, (70)

¢ =u — 2+ u coth y cos . (71)

The surprising property of these first order equations is
that both are real! It is very easy to convert the Schrédinger
equation (1) into a pair of complex first-order equations, e.g.,
(6a), and {6b), but the fact that two real equations were ob-
tained implies that some information has been lost. This can
indeed be seen if we attempt to solve (35) for ¢, subject to the
current normalization

i — )2 = 1. (72)
We obtain
Wb =Y — T +X), (73)

but there is no algebraic solution for # itself. Note that the
value of ¥/¢ is indifferent to multiplying ¥ by a constant
phase.

Likewise, if we try to solve (35} for fand g, subject to the
constraint {14), we obtain

S = cosh(y /2) explila + ¢ )/2], (74a)
g = sinh{y /2) explila — ¢)/2], (74b)
and the phase ¢**’? remains algebraically undetermined.

However, it is not arbitrary! Substitution of (74) in (10) yields
(70), (71), and also

& = — u cos¢ /sinhy, {75)

so that only a constant phase is left undetermined.

The remarkable result here is that we do not need a to
solve the “reduced” Schrédinger equation (70) and (71).
Moreover, in many physical applications®'¢ y is large, and
we can replace cothy by unity in Eq. (71). The latter can then
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be solved, analytically or numerically, for ¢ and substitution
in (70) readily yields y.

To conclude this section, let us examine the case of a
delta-function potential ¥ = V,8(x), an approximation often
used in solid state physics. As §( x) = k&(t ), we have

u = (2mVy/fk 5(t )=vé(t ). (76)

This can be considered as the limit of a rectangular potential
u = v/efor 0 < t <€, as e—0. Now, the transfer matrix for a
constant potential u over a dimensionless distance 4t =a is
given by Egs. {50)—(52), with

0 = (O,ua, — (2 — u)a), (77)

as can be seen from (60). In the present case, ua = — v and
we get 8 = (0,0,v), so that 82 = 0. We thus have, instead of
(51) and {52}, S = 1 and C = i, and (50) becomes

1—v¥2 —v =02
A )= v 1 v . (78)
v’/2 v 14022
This can also be written as
0 —-v O
A(v) =exp{ v 0 vl (79)
0 v 0
from which it follows that
AW A (w)=4{ + w), (80)

just as in Eq. (A8). Since TrA4 (v) = 3, there is only a single
degenerate eigenvalue, A = 1, corresponding to a unique
null invariant eigenvector

0 =(—1,0,1). (81)

V. TRANSMISSION THROUGH DISORDERED CHAINS

There has recently been considerable interest in the
conduction properties of disordered media. For a one-di-
mensional chain, it has been argued that the electric resis-
tance is'’"*°

(mhi/e%p = (/)N Y. (82)

The universal constant 7#i/e” is 12 906 {2 in engineering
units, but the “resistance” (82) has properties very different
from those familiar to electrical engineers! E.g., consider a
rectangular barrier of length a and height u = 1 — (7/2a)>.
From Eq. (77) we have 8 = 7 and, therefore, by Eq. (33b),
|N|*>=15°/6%= (a/m)* — 1. The “resistance” of this barrier
can therefore be made arbitrarily large by increasing a. How-
ever, two consecutive barriers, as shown by Fig. 4, have zero
“resistance,” because @ = 27 and therefore N = 0.

Nevertheless, p, which is the ratio of reflection to trans-
mission probabilities, has a direct physical meaning and an
important physical problem is to find the ensemble average
(|N |?) and higher moments {|N |*?) for a given set of ran-
dom chains. The mathematical techniques developed in the
preceding section are ideally suited for this purpose.

Figure 2 shows that at the exit end of the barrier (x = a)
we have R, = (0,0,1) and at its entrance
T=|M|*+|N|*=2|N|*+ 1, by Egs. (18) and (35c).
Therefore,

p = (T — 1)/2 = sinh*(y /2). (83)
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1 a 2mn [o}

FIG. 4. Two identical barriers of thickness @ and height 1 — {7/2a)’ are
separated by an integral number of wavelengths. The transmission prob-
ability of each barrier can be made arbitrarily small by increasing a, but the
double barrier has unit transmission probability.

As a simple example, consider an ensemble of one-di-
mensional chains, consisting of two types of sites represented
by transfer matrices 4 and B, randomly distributed with pro-
babilities 2 and b = 1 — a, respectively. Each site corre-
sponds to an SO(2,1) rotation through a finite angle around
some invariant vector, as in Fig. 3. However, even if both
rotation axes are “‘timelike” (i.e., even if the energy is in the
conduction band of each one of the sites), a product of these
transfer matrices, such as AB, or ABAAB---, may have a spa-
celike invariant vector (and vice versa). That this is in fact the
generic case for a random product of transfer matrices may
be seen as follows. Each one of our random chains is repre-
sented by a random walk on the hyperboloid of Fig. 3. As all
the points of the hyperboloid are equivalent (and thus equi-
probable) under the SO(2,1) group, the locus of R is almost
certain to run away to infinity: Most random chains have
very low transmission probabilities.

A quantitative estimate of this property can be obtained
by noting that the average R after n sites simply is

(R) = (a4 + bBY'R,, (84)

because expanding the parenthesis yields all the configura-
tions such as ABAAB--., each one multiplied by the corre-
sponding probability abaab--- (we assume here that consecu-
tive sites are uncorrelated). This result is readily generalized
to more than two types of sites.

Now, the crucial fact is that the expression a4 + bB is
not an SO(2,1) matrix (unless 4 = B ) just as the average of
two orthogonal matrices is not in general an orthogonal ma-
trix. Moreover, we shall presently show that if [4,B ] #0, the
largest eigenvalue of (a4 + bB ), which dominates (84) for
large n, is real and must exceed unity. The proof is given
below in the only physically intersting case, when both 4 and
B have “timelike” eigenvectors (all their eigenvalues are 1
and e *%),

First, assume that 5<1 and choose the T axis along the
invariant eigenvector of 4, so that

cosd —siné O
A=]sind  cosf 0} (85)
0 0 1

as shown by Eq. (50) with £ = = Oand 7 = 6. The charac-
teristic polynomial

D =det[(1 — b)4 + bB — A (86)
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can be written as
D=1 —Mcos&+/12)[1 —A+b(Bp —1)]

+(1—4)o®B)+0((b?, (87)
and a solution of D =0 is
Ai=14+b6Br—1+0(b3. (88)

Since B, > 1, as noticed after Eq. (55), we see that a pertur-
bation b (B — A ) always shifts the eigenvalue A = 1 of 4 to-
ward 4, > 1. (The only exception is if B = 1. This, how-
ever, implies not only [4,B] = 0, but also that 4 and B must
be powers of the same matrix. In other words, the two ““dif-
ferent” sites simply consist of different numbers of identical
sites.) The situation with b (or a) not infinitesimal is described
by Fig. 5, which shows that there is always (at least) one real
eigenvalue 4, > 1.

The next question is what happens to the complex ei-
genvalue e = . It is shown in Appendix B that they may
move inside or outside the unit circle, but that the eigenvalue
having the largest magnitude is always real. {If it were not so,
the average resistance of an ensemble of random chains
would be an oscillatory function of their length, a rather
unreasonable proposition.)

Returning to Egs. (83) and (84), we see that

(p)~A", (89)
i.e., the average resistance increases exponentially with the
length of the random chains. This result, which had been
known for a long time,'” has little physical significance,*'
because this average ( p) is not at all representative of the
“typical” p: The value of the average is mostly due to exceed-
ingly rare configurations of extremely high resistance which,
if found by experimentalists, would be rejected as ‘‘broken”
chains! (In some computer simulations involving thousands
of random chains, it happened that not a single one exceeded
the expected average.)

This amazing discrepancy between the average ( p)
and the “typical” p is best seen by calculating the standard
deviation, or more simply

(p?) =AT—17)/4. (90)

We can obtain {(7°?), or more generally (77)°?? by investi-
gating the (2p + 1)-dimensional representations'® of
(a4 + bB ). E.g., we may take as basis XY, XT, YT,
(X? — Y?3/2,and (3T % — 1)/2, which transform linearly un-

A<

> b= 1-a
A>1 \

FIG. 5. The characteristic polynomial D (5,4 } = det(ad + bB — Al }forreal
A. As shown in the text, the line A = 1 must have a positive slope at & = 0
and, for the same reason, a negative slope at & = 1. As the polynomial D is of
degree 3, that line cannot cut the b axis between b = 0 and b = 1. All the
physical values O < b < 1 therefore yield A > 1 for D = 0.
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der SO(2,1). The same argument as before then leads to

(P*)~A5", (91)
where A, is the largest eigenvalue of the five dimensional
representation of (a4 + B ). Now, since { p*)>{ p)? we
must have A,>4,% In other words, the standard deviation
increases faster than the mean (the distribution of p has a
very long tail with a disproportionate influence on {p)).

The problem of defining a “typical” p (more precisely,
of finding a normally distributed function of p) has been stu-
died by a number of authors®'#2%2! and will not be discussed
in the present paper.

VIi. ENERGY RESCALING

In this section, we examine the consequences of shifting
the origin of the energy scale, as in Eq. (5). Indeed, as long as
we considered barriers with compact support, such as in Fig.
2, it was natural to set ¥ = 0 outside the barrier. However,
there is no natural energy zero for an infinite chain, e.g., for a
periodic potential. We shall first assume that the new energy
E' = #k '?/2mis positive, like E. The case E ’ < 0 will be dis-
cussed in Sec. VII.

It is convenient to define the energy rescaling by

k' =e®k, (92)
where @ is a real constant. This is accompanied by a (dimen-
sionless) Jength rescaling

t'= —k'x=e"t (93)
We then have

W= [2mV /) +k?—k?)/k"?

=e Pu—1)+1.
Moreover, to retain the current normalization
J = #ik'/m = %], the new Schrodinger wavefunction must
be ¥ = e®”*y. (Throughout this section, a prime means

“new,” not a derivative with respect to x.)
If we define /" and g’ as in Eq. (4), we thus obtain

(94a)
(94b)

S48 =ef +8) (95a)
[ —g=e""*f—g) (95b)
whence
, _(cosh(®/2) sinh(P /2)
= (sinh(qb /2)  cosh(¢ /2)) (96a)
= exp(Dsy V. (96b)

The transformation matrix is both real and pseudo-unitary.
The new transfer matrices are given by

A" = exp(Psy)dexp( — Psy), (97)
so that their trace (which determines whether the energy isin
a conduction band or in a gap) is not affected. These transfer
matrices have no other independent invariant because
Tr(d?) = (Trd }* — 2.

Higher-dimensional representations transform in a si-
milar way under energy rescaling. E.g., we have

R’ = exp(®Sy)R (98a)
cosh® O sinh®

= 0 1 0 R. (98b)
sinh@ 0 cosh®

Asher Peres 1116



Note that Y is invariant, while T+ X scale as e * %, i.e., as
k t%orE £1,

Looking at Eq. (96), one is naturally tempted to ask why
did the Schrodinger equation (11) involve only o, and o, , but
no o, . Let us try to generalize (11) as

iV = [(1 —u/2o, — (u/2ic, + vio, | ¥P. (99)
If we impose f + g = ¥, we obtain
ip=f—g+ v, (100)

so that we cannot have f — g = i as in (4). Differentiating
(100} once more with respect to ¢ and using (99), we finally
obtain

Y= (u+0v+0"— 1), (101)
which is a Schrédinger equation with potential
V=(u+v+v)E. (102)

Therefore, if ¥ is such as to be conveniently split as in Eq.
(102), the Schrodinger equation can be written as in Eq. (99).

VIl. NEGATIVE ENERGY AND BOUND STATES

Rescaling the energy as in Eq. (92) can never give E ' <0,
unless @ is imaginary. This, however, is unacceptable be-
cause it would make the transformation (98) complex, while
R’ has to be real. We must therefore start afresh and write the
Schrédinger equation as

— ¢ +up= — kY, (103)
where u = V /E as before, and
k*= —2mE /#>0. (104)

We now define 1 = — «x so that (103) becomes
1= (1 — u)y, instead of ¥ = (1 — 1)3, which was valid for
E>0.

Instead of (4}, we now write

f=w—2 (105a)

g={+ 92 (105b)
and the Schrodinger equation becomes

¥=[—(1—u/2o, + (u/2ic,]¥. (106)
The matrix

o= —(1—u/2o, + (u/2io, (107)

has two interesting properties: All its elements are real (so
that all transfer matrices A4 will now be real, even though ¥
may be complex), and w is anti-Hermitian with respect to the
metric g, :

o'= —o,00,. (108)
This means that ¥ 1o, ¥ is invariant under ¥—A¥ (indeed,
Y'lo, ¥ = — 2mj/xfimustbe conserved), i.e., 4 must belong

to the real symplectic group Sp(2,R ):

ATe A=0,. (109)
In fact, any 2 X 2 real matrix with unit determinant satisfies
(109)—Sp(2,R ) is isomorphic to SL(2,R ). This point will be
further discussed in the next section.

Of special interest are normalizable negative energy
wavefunctions, which correspond to bound states. They be-
have as e ~** = ¢’ on the right-hand side of the potential well
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(the “barrier” will now be called a well) and as & = ¢~ ‘on

its left-hand side. We therefore have f = 0 and g = O, respec-
tively, on both sides of the well, so that the transfer matrix
corresponding to a bound state has the form

a b
A"sz(—b—* o)‘

For example, if we consider a square well (¥ > 1 constant
over a distance d = «t } we have from (106) and (107)

(110)

A =ewr
=cos[(u — 1)""*t] + w(u — 1)~"?sin[(u — 1)"?¢].
(111)

The null matrix element in (110) is

cos[(u — 1)V ] + (1 — u/2)(u — 1)"Zsin[(u — 1)*/%¢ ]
=0, : (112)
whence
tan[(u — )V 1= — (1 —u/2)u—1)""2
This is identical with the familiar eigenvalue equation
tankd = 2«k /(k % — i), (114)

where k2 = (u — 1? = 2m(E — V')/#*. We have thereby
found the energy eigenvalues algebraically, without having
to solve any differential equation.

The same results can also be expressed in the SO(2,1)
formalism. By analogy with (35) we define

(113)

X=Fg+/8=Wy— )2, (115a)

Z=Ff—g8= — W+ )2, (115b)

T=Ff+g8=y+ /2. (115¢)
The fourth combination,

i(Fe —f8) =iy — Po)/2, (116)

is proportional to the current and can be normalized to 1,
unless it is zero {e.g., for a bound state). We thus have

T>—X2—Z%>=1 (or0). (117)

In particular a bound state can be defined by the following
boundary conditions (at both ends of the well): X =0,
Z= +1,and T=1.

Vili. ENERGY INDEPENDENT REPRESENTATION

We have seen that positive energy wavefunctions are
conveniently related by transfer matrices belonging to
SU(1,1), and negative energy ones by matrices belonging to
Sp(2,R ). In both cases, it is possible to construct transfer
matrices belonging to SO(2,1), but we need different bilinear
combinations, (35) and (115), for E20.

In this section, we show how to construct transfer ma-
trices in a way which does not depend on the energy. These
matrices belong to the group SL(2,R ), which is homomor-
phic to the three other ones. It is in fact isomorphic to
Sp(2,R ), as noted previously.

The SL(2,R ) basis {f,g} which was used in the preceding
section is given by (105), where ¢ = ( — 1/x)(3¥/dx). It fol-
lows that any real linear combinations of fand g are also a
basis for SL(2,R ), because det{S4S ~') = det(4 ) = 1, forany
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nonsingular S. In particular, it is possible to choose as our
basis®  and ¢ = Jy/Ix,even though they are not dimen-
sionally homogeneous.

As an example, let us write down the SL(2,R ) matrix

€

¢ d

with basis {#,¥'}, corresponding to the SU(1,1) matrix (17).
We readily obtain from (4)

M= [a+ikb+ (c/ik})+d]/2, (118a)

N=la+ ikb—(c/ik)—d /2, (118b)
whence

a b\ Re(M + N) ImM+ N)/k

(c d>_(—klm(M—N) Re(M — N) ) (119)

Note that |M | — [N |* = ad — bc = 1, as expected.
The equations of “‘motion”

d

L=, (120a)
%=%W‘E’¢ (120b)

are now identical for both signs of E. On the other hand, it is
impossible to construct a bilinear “vector” R such as {35) or
(115) which is dimensionally homogeneous and real for both
signs of E (because some components must involve E '/? for
dimensional homogeneity). However, if the latter require-
ment is not imposed, one can define a real basis such as

X=@y—9v)2, (121a)

Y=y +¢'¢)/2, {121b)

T=@y+9¢)/2 (121¢)
satisfying

T? - X*— Y =[(py¢ — ¥'¥)/2i}* = const. (122)

We again encounter the SO(2,1) group.
The rescaling transformation discussed in Sec. VI is
simply given by

e¢/2 0
( 0 e ‘p/z)’

for the {¢,¢'} basis and by Eq. (98b) for the {X,Y,T | basis.

(123)

IX. CONCLUDING REMARKS

The formalism developed in this paper may also have
interesting applications for some problems intermediate
between exactly periodic potentials and completely random
ones. For example, a potential with two incommensurable
periods®* may be described as generating two simultaneous
SO(2,1) rotations around different axes. Another possible ap-
plication could be the addition of a homogeneous electric
field to a periodic potential, a notoriously controversial
problem.”

In retrospective, one might be surprised that group the-
ory was found useful in a problem with no apparent symme-
try. In fact, there is (of course} a ““hidden” symmetry: If
boundary conditions allow ¥ to be genuinely complex for
some E (namely, ¥ cannot be made real by adjusting a con-
stant phase), then ¥ and ¥ are linearly independent solutions
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of the Schrodinger equation (1) and so is any linear combina-
tion thereof. These linear combinations can then be used as a
manifold for the representation of a continuous group of
transformations. As is well known, the underlying symme-
try is time reversal—which is implicit in the time-indepen-
dent Schrodinger equation.
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APPENDIX A: PSEUDONORMAL MATRICES

The transfer matrices which we considered here are not
normal (they do not commute with their adjoints) and some
of their properties may be unfamiliar to physicists accus-
tomed to Hermitian or unitary matrices. This appendix
briefly states some theorems needed in the text. (For the spe-
cial case of 3 < 3 matrices, see Ref.26.)

A square matrix A has right eigenvectors
A v, ) = A |v,) and left eigenvectors {u; |4 = A (u,|. The
eigenvalues A are the same, since they arise from the same
characteristic equation. From

(uzld v,y =Auzlv, ) = pluy v, ), (A1)
it follows that
(A — u){u, |v,) =0, (A2)

Thus, left eigenvectors and right eigenvectors belonging to
different eigenvalues are mutuaily orthogonal.

Let us now assume that all the eigenvalues are different,
so that the eigenvectors are linearly independent. We can
normalize them by

(uzlv,) =6, (A3)
(This determines the (u| once the |v) are given, and vice
versa.) Thenthe P, = |v, ) {u, | are a complete set of mutual-
ly exclusive projection operators, namely P, P, =45, P,
and 2, P, = I. We can then write

A=3,AP,, (A4)
and therefore
A"=Z,A"P;. {AS)

It follows that 4 " is controlled by the largest |4 | and in-
creases exponentially with # if the latter is larger than 1.

However, if some eigenvalues are degenerate, the situa-
tion becomes radically different. E.g., consider the SU(1,1)
matrix

A(a):(

Its only eigenvalue is A = 1 and the corresponding eigenvec-

1+ia ia )

) . (A6)
—ia 1 —ia

tors are, up to a factor, |v) = (1, — 1) and {(#| = (1,1). In-
stead of (AS) we have
A (a)" = 4 (na), (A7)
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or more generally
A@Ab)=A(a+b) (A8)
Although the transfer matrices used in this paper are

not normal, we can call them “pseudonormal” because they
satisfy

A" =nd'y, (A9)
and therefore
[4"ndn] =0. (A10)

Here, 7 is the indefinite metric corresponding to the repre-
sentation being used, e.g., 7 = o, for SU(1,1) matrices or
7 = G [cf. Eq. (28)] for SU(2,1) matrices. As n" = 7 and
n? = 1 for all representations, we have

AMlv) =nd ~ o) =4 " "nlv), (A1)
whence, taking Hermitian conjugates,

(v lnd =2~ vl (A12)
It follows that

aly = (uyzl, (A13)

so that if A is an eigenvalue, 1/ must also be one and (A13)
gives the relationship between the corresponding eigenvec-
tors. In particular, if 4 = 1/4 = e®, we simply have
(v1|m = (u,|. On the other hand, if 4 is real, then
(viln = (u,,M.

In summary, we have the following pseudo-orthogona-
lity relations

(v[mlu,) =0, (A14)
ifA and u arerealand A # 1; orif A and/orpise®and A #pu.

APPENDIX B;: THE COMPLEX EIGENVALUES OF
(aA + bB)

It was shown in Sec. V. that the real eigenvalue of
aA + bB, continuously connected to the eigenvalue A = 1 of
A and B, satisfies 4, > 1 {see Fig. 5). For small it is given by
Eq. (88), where B is the 7T matrix element of B in the
coordinate system where 4 has the form given by Eq. (85).
With the notations of Appendix A,
By =Tr(BP)) = (u,|B |v,). (B1)
In this appendix, we examine the behavior of the two
other eigenvalues of (a4 + bB ), which are continuously con-
nected to the complex conjugate eigenvalues of A4 and B. It
will be shown that if they are also complex conjugate, their
absolute value cannot exceed 4 ,, so that the matrix elements
of (a4 + bB)" indeed behave as (4,) " for large n.
Let A and A be these two complex eigenvalues. From the
characteristic equation, we have
AA |* = det(ad + bB). (B2)
The right-hand side of (B2) is a third degree polynomial in
b =1 — a, having the value 1 at 5 = Oand b = 1 (see Fig. 6).
As we did in Fig. 5, we first examine the case 5<¢1. We have
detad + bB)= 1+ b [Brr + (Bxy + Byy)cosf
+ (Byx — Bxy)sind — 3] + O(b?). (B3)
Now
|(Bxx + Byy)cos® + (Byy — Byy)sind |
<[Bxx +Byy) + (Brx — Bxy 1Y% (BY)
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- ‘~\\/)‘21
z,
1

L]

— X[ [%= Det (oA +bB)

— b= 1-a

FIG. 6. The solid line is a cubic with a local maximum for 0 < b < 1. Equa-
tion (B6) shows that its slope at b = 0 {and likewise at & = 1) is less than that
of A%, drawn as a dashed line, The latter also can have only a single maxi-
mum for 0 < b <1 {see Fig. 5). It is therefore very plausible that these two
lines do not intersect between 0 and 1, but a formal proof seems difficult. [As
explained after Eq. (88), the opposite result would be physically
unreasonable.]

By virtue of Eq. (55), the right-hand side of (B4) simply is
|M |?> = |N|* + 1, where M and N refer to the B matrix in the
coordinate system where 4 is given by (85). Also

Ay=14bBr—1)=1+2b|NJ? (BS)
and we obtain from (B3) and (B4)

1<det(ad + bB)<1 + 4b|N |*’<4 . (B6)
It then follows from (B2) that we have

AT < AT KA PA <A (B7)

This was proved for small » (and likewise for small a).
The situation for finite b is illustrated by Fig. 6, which clearly
indicates that the relation (B7) should be valid for all
0 < b < 1. A formal proof, however, seems very difficult.
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A representation of the expectation value of quantum mechanics, which recently has been set up
for normal states, is generalized to singular states. It is shown that states can be represented by
finitely additive measures on the state space, which are o-additive if and only if the states are

normal.

PACS numbers: 03.65.Ca, 02.50.Cw

. INTRODUCTION

Recently we have set up a formulation of elementary
quantum mechanics by means of classical probability the-
ory."? In this formulation, the well-known trace formula for
the expectation value is replaced by an integral expression
quite in analogy to the expectation value in classical statisti-
cal mechanics.

For an observable represented by a self-adjoint operator
A on a complex separable Hilbert space H, the expectation
value reads

E(4;W)=tr(WA), (1)

where Wis a statistical operator describing the state of the
system. As has been shown in Ref. 1, the expectation value
can equally well be expressed by the formula

E(4W) =Lduw(¢)fA @), )

where u 5, is a probability measure on H determined by the
statistical operator W, and f, : H—R is defined by

fa@)=(d4]d). (3)

Whereas in Refs. 2 and 3 this formalism has been gener-
alized to unbounded operators, here we are concerned with
the representation of singular states within the framework of
the probabilistic formulation. To this end, let us remember
some results concerning singular states where we confine
ourselves, as far as the observables are concerned, to the C *-
algebra L (H ) of bounded operators on H.

Let us first fix some notation. By L _ (H ) we denote the
space of compact operators and by L, (H ) the real Banach
space of bounded self-adjoint operators on H. S (H ) denotes
the set of statistical operators, i.e., the positive, normalized
trace-class operators on H. The space of linear, continuous,
positive, normalized functionals on L (H ) is the state space
E (u) of L (H). For more information on the mathematical
background cf,, e.g., Ref. 4.

A state @ on L (H ) is called normal if

sup{w(d,)} = w(sup{4, }) 4)
for all increasing nets {4, | of positive elements of L (H ) with
an upper bound in L (H ). It can be shown, cf. Ref. 4, that this
definition is equivalent to the following more familiar char-
acterization. A normal state we E |y, is determined by the
fact that it can be represented unambiguously by a statistical
operator We S (H ) such that v = wy, and
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owld)=tr(WA). (5)
The subset of normal states is denoted by N, 5, and identi-
fied with S {H ).

It can be shown, cf. Ref. 4, that every we E; 4, has a
unique decomposition

o =4, + (1 — 1)w,, (6)

A€[0,1], w,, w,€ E; ) suchthatw,e Ny 4, and & Ny 4,
and the decomposition of w; in analogy to Eq. (6) has no
normal part. This state w, is called the singular part of w. Itis
characterized by w,(4) = 0 for all Ae L _ {H).

The normal states can be characterized from a probabi-
listic point of view as follows. Consider Lat(H ), the lattice of
projections on closed subspaces of H. In analogy to a prob-
ability measure on a measurable space, a generalized prob-
ability measure 7 is a [0,1]-valued function on Lat(H ), nor-
malized to 7(1} = 1 and satisfying the condition of
o-additivity,

(v P)=3 ) )
for any countable family of mutually orthogonal elements P,
of Lat(H ). The theorem of Gleason, cf. Ref. 5, assures that for
dim(H )>3 a generalized probability measure 7 uniquely is
characterized by a statistical operator We S(H ), m = my,
such that

7w(P) = tr(WP) (8)

holds for all PeLat(H ). Identifying elements of Lat(H ) with
random variables in this generalized theory of probability
formula (1) is easily reconstructed.

These considerations show that generalized o-additive
probability measures on Lat(H ) and normal states can be
identified and that singular states lie outside the framework
of proposition calculus which is based on Lat(H ). Nonethe-
less, singular states, as well as mixtures of singular and nor-
mal states, are necessary and useful for the description of
scattering states, ergodic states, or idealized states associated
with a point in a continuous spectrum.

The proof of Eq. (2) shows that this formula is confined
to normal states. It is the purpose of the present paper to
generalize this formalism to include singular states. This is
achieved by representing operators by functions and states
by functionals. An appropriate extension of these allows the
identification of states with finitely additive measures on the
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Hilbert space. These results are discussed with respect to
their structural status in the framework of the probabilistic
formulation of quantum theory.

Il. REPRESENTATION OF SINGULAR STATES

To include singular states in the scheme setup in Refs. 1
and 2, we proceed in several steps.

(i) Instead of representation (2), we prefer to express the
expectation value as

E(A;W>=JH i) ) 9)

where v,, is a probability measure on (H \ {0}, % (H \ {0}))
defined by

vw(B) =Ldywt¢)||¢ B (10)

BeZ(H \ [0})and f*: H \ {0} >R is given by
FUe) =18 11"u(p) = (g |4 1$)/|16 ] (11)
(ii) Consider C, (H \ {0}), the Banach space of contin-

uous, real-valued, bounded functions on H \ {0} with the
sup-norm

|| £1] = sup{| f(¢)|;6e H \ {0]} (12)
and define i: L, (H }—C,(H \ {0}) by
iA)=f". {13)

Obviously, f4eC{(H \ {0}), which is defined as the set
IHH\{0}) = { feC,(H \{0}); thereisan de L, (H )
such that f=f1}. (14)
The mapping / is injective and i(4 )eC,, (H \ {0}). By virtue of

1A )] = |14 1], (15)
i is bounded and an isometry such that we obtain the follow-
ing result:

Lemma 1: The mapping { is an iscmetric isomorphism
from L, (H ) onto C{(H \ {0}) and C{(H \ {0}) is a norm-
closed subspace of C,(H \ {0}).

(iii) LetwbeastateonL (H ),i.e.,w€ E; 4, . Themapping
& on C{(H \{0}),

(f*)=oli" (1) = wld), (16)
defines a linear, positive, continuous functional. It is our aim
to extend @ to all of C,(H \ {0}), which is a vector lattice,
and to apply abstract integration theory there.

Proposition 1: Let w be astate on L (H ). Then &, defined
by (16), has a positive, linear, norm-continuous extension to
C,(H \ {0}).

For the proof, we use a theorem of Krein-Rutmann.® It
is sufficient to show that C{{(H \{0})n C ;7 (H \{0});

C ;7 (H \ {0}), denoting the positive cone of C,(H \ {0}),
contains an interior point of C ;" (H \ {0}). Take f*
eC¢(H \{0}), f"(#) = 1, and verify that the open ball of
radius } with center /', U, , (") CC{(H \ {0})

N C " (H \{0}), is contained in C ;" (H \ {0}).

The extension of @, the existence of which is assured by
this theorem, will be denoted by &.
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(iv) C,(H \ {0}) is a Stonian vector lattice (cf., e.g., Ref.
7). An abstract integral, also called a Daniell integral, on a
Stonian vector lattice F of functions is a linear, positive, o-
continuous functional j on this lattice, where o-continuity
refers to the property that £, 1 f, f = sup{ £, | implies that

sup{ jl £, )} =Jlsup{ /. }) (17)

for any nondecreasing sequence of functions f,, of F.

Let / now denote an abstract integral on C,(H \ {0}).
According to the general theory (cf., e.g., Ref. 7, Theorem
40.5) there exists a unique finite Borel measure u on (H \ {0},
% (H \.{0}))suchthat C,(H \ {0})C L '(H \ {0}, Z(H \ {0}),
) and

i) = JH L du8)f8) (18)

for all feC,(H \ {0}).

As & is a linear, positive, norm-continuous functional
on the Stonian vector lattice C,,(H \ {0}), we want to analyze
its properties more precisely. To this end, let j be a positive,
linear functional on a vector lattice F. Then there exists, cf.
Ref. 8, a unique decomposition of j into a o-continuous part
J. and a purely discontinuous (non-o-continuous) part j;
which cannot be decomposed further into parts containing
o-continuous constituents such that

J=Jc tja- (19)
Equation (18) allows for a representation of j. in (19).

(v) We now are able to apply these results to the state @
defined on C,(H \ {0}) in terms of we E; .

Proposition 2: Let we E; ) and & the associated repre-
sentation as functional on the Stonian vector lattice
C,(H \ {0}). Then the decomposition of @ into a normal and
a singular part, v = dw, + (1 — A4 Jw,, is equivalent to the
decomposition of @, i.e., (&), = (1w, )A and
@)y =((1—-2)o,) .

Proof: (a) Assume that @ is normal. Then we canuse v,
the measure on H \ {0} set up in step (i), to define & on
C,(H \{0}) by

f) = L L1116, 20)

As feC, (H \ {0}), the integral exists. Moreover, due to the
fact that abstract integrals and finite Borel measures coin-
cide on H \ {0}, this is already the desired representation.
(b) Let @ be a singular state and & the associated linear,
positive, norm-continuous functional on C,(H \ [0}). As
there exists an increasing net {4, } of positive elements of
L, (H)such that sup{w(4,)} #w(sup{A4, }), we infer that
sup{&(f A")} FZo(suplf A"} ). Here we use the fact that positi-
vity, on a complex Hilbert space, implies self-adjointness

such that the £~ are well defined. The violation of equality
shows that @ is not o-continuous and, by contradiction, we
conclude that & is purely discontinuous.

(c) Let we E, 4, @ the associated functional on
C,(H \ {0}), and & = (&). + (®), the decomposition of &
with respect to g-continuity. As (lw,) is o-continuous and
((1 —A)w,)) is purely discontinuous, the uniqueness of the
decompositions gives the assertion.
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{vi} According to the procedure set upin Ref. 9, & can be
used to associate with every state  a positive, finitely addi-
tive set function , on a Boolean lattice # (depending on &)
of subsets of H \ {0}. This family of sets contains H \ {0} as
1y o €C,(H \ {0}) such that

HoHN{O}) =d(1y o)) =a(f) =w(l)=1.  (21)

Quite in analogy to the decomposition of w and @, this
set function g, can be uniquely decomposed into a o-addi-
tive part ¢, and a purely finitely additive part ¢ such that

Ho = Mo + 15 (22)

Considering the parts @, and @, separately on
C,(H \ {0}), we obtain Boolean lattices # . and . ; of sub-
sets of (H \ {0}) and finitely additive, positive set functions
i< and 4¢ which can be associated with these functionals.
Here ji¢, defined on .% , is o-additive and 22 definedon ¥,
is purely finitely additive. As ¥ = % . n.% 4, the set func-
tions 2¢, and 4% can be restricted to .5 with the result (cf.
Ref. 9) that on ¥ we have

ps =i, pd=pc. (23)

For the continuous part of &, namely &, we already
know that it can be represented by means of a measure,
which can be identified with 45, on Z (H \ {0}). As the o-
continuity properties of & transfer to u,,, the decomposition
of u,, allows us to state the central result.

lll. CONCLUSION

We have shown that every state w€ E| 5, can be repre-
sented by a linear, positive, norm-continuous functional &
on C,{H \ {0}) and therefore represented by a normalized
finitely additive set function on A \ {0}. This set function is
o-additive, hence a measure, if and only if w is normal.

Here it becomes obvious that the analogy between
quantum mechanics and classical statistical mechanics as
suggested by Eq. (2} is not sufficient. In quantum mechanics
there exist, contrary to the classical case, states which cannot
be represented by o-additive measures on the state space.

Let us conclude with some remarks. First of all, we
want to state that the representation given by Eq. (2) is not
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appropriate for the incorporation of singular states as
f4€C(H),but C(H)¢CL(H,% (H ),1w) for a given W.

As we have seen, singular states can be represented by
finitely additive measures. This may allow for an application
of the theory of weak distribution (cf., e.g., Ref. 10) to express
the expectation value in this case. It remains an open ques-
tion whether the formulation of singular states for unbound-
ed operators may be incorporated into the present formal-
ism.

Equations (4) and (17) already show the structural simi-
larity of o-continuous functionals and normal states. The
property of o-additivity in generalized (quantum) probabil-
ity can now be identified with classical o-additivity. Whereas
the theorem of Gleason asserts that a generalized o-additive
probability measure can be represented by a statistical oper-
ator, we have shown that it can be represented by a o-addi-
tive classical probability measure. On the other hand, singu-
lar states may be identified with non g-additive generalized
probability measures on Lat(H ) or finitely additive measures
on H \ {0].
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The motion of a particle in a potential decreasing with time as | X |” is considered. Different time
and space rescaling are considered in order to obtain the asymptotic solutions. The validity of
adiabatic invariants is discussed. The classical critical case corresponds to the obtainment of self-

similar solutions for the quantum problem.

PACS numbers: 03.65.Ge

I. INTRODUCTION

In a preceding paper' we have shown how the concept
of quasi-invariance allows the study of the asymptotic solu-
tions of equations of the type

d*x

dt?
We show here how this technique may be applied to equa-
tions describing the motion of a particle in a potential of the
form

$=K|x|"(1+02t)"7" (1)

where KX, {2, n, and p are four real positive numbers. More-
over, in this paper we study the case 2 — 0 which corre-
sponds to an adiabatic motion with an assotiated adiabatic
invariant. We show that if p < p, = n/2 + 1 this adiabatic
invariant is valid for all times. On the other hand for a finite
value of {2 we will be able to define an asymptotic invariant,
i.e., a quantity independent of time for ¢ large enough. Final-
ly we will comment on the quantum problem and show how
this critical case p, = n/2 + 1 can be interpreted through
the self-similar solutions of the corresponding Schrodinger
equation.

+A(1+0t)""x + B(1+ 02t)*x* =0,

Il. GENERALIZED CANONICAL TRANSFORM

Consider the equation of motion

d’x dx
== =r 2
dt? +h dt 2
and the following transformation (see also Ref. 2}:
x=£C(t), dO=dt/A?, {3)

where C (t) and A (¢ ) are two arbitrary functions of time, al-
ways positive. We call £ the new coordinate, & the new time,
and 17 = d£ /dO the new velocity. We have

dx C dc

ar 147 ¢ dt )
Straightforward algebra transforms Eq. (2) into the new
equation

v

d¢ ( A
A2 +2(4C — )
ST BA* + C( CA)
dé A“(dZC dC) A4
X2+ —=le==2_r.
d¢9+ C \dt? +A dt g CF )
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It is easy to show that transformation (3) forms a continuous
Lie group. Two successive applications of transformations of
the type (3) defined, respectively, by C,(¢), 4,(t) and C,(2),
A,(t) lead to a third transformation 7, such that

G =GC, (6)

Ay =44, (7)
The proofis straightforward. Equations (6) and (7) are direct
consequences of Eq. (3). We must also check that the velocity
satisfies relation (4) and that the substitution leads to the
same terms as the two successive applications for the drag
term [second term of the lhs of Eq. (5)], the transformation
field [third term of the lhs of Eq. (5)) and the rescaled phys-
ical field [rhs of Eq. (5)].

Equation (5) can now be used for different purposes. 4
and C may be selected in such a way that a problem with
friction (B #£0) is transformed into a problem without fric-
tion. On the other hand, we can prefer a problem exhibiting a
friction term and a potential energy independent of time toa
frictionless problem where the Hamiltonian is time depen-
dent. This last point of view is adopted here to solve

d’x

dt?
Taking Eq. (3) into account Eq. (8) becomes

+ Kn(sgn x)|x|" = (1 + 02¢) "7 =0. (8)

d2§ A DC dA\ d¢& At d*C
+2—(A——C—)———+-—

de* C dr dr/ do C dt2§
+AKn(sgn E)C"2E "1 4+ 2¢) =P =0. (9)

In Eq. (9) we will call “new friction”™ the coefficient of d€ /d8,
“transformation field” the third term of the lhs, and *“re-
scaled physical field” the last term with corresponding
transformation and rescaled potential. The initial equation
(8) has no damping but unless 4 = C the new equation exhib-
its a friction term.? Select now 4 and C such that

A=(14+02t), C=(1+mY, (10)

and impose that the coefficients of the second, third, and
fourth term in Eq. (9) are time independent. We must take
a=1/2and y = (p — 2)/(n — 2) and Eq. (9) is now written

d2§+21’—"“20_‘f£ (p—2)(p—n)
de? n—2 de (n—2)
X026+ Kn(sgn £)|£ "' =0. (11)
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Equation (11) allows the computation of the asymptotic
form of the solution. We consider (Fig. 1) eight cases corre-
sponding, respectively, to eight regions of the n-p space de-
lineated by the straight linesn =2,p=2,n=p,p=n/

2 + 1 (see Fig. 2). Moreover on Fig. 1 we give the sign of the
coefficient of d§ /d@in (11). 4 indicates a positive damping,
— anegative damping, i.e., a spontaneous increase of the

velocity.

lil. DISCUSSION OF THE DIFFERENT CASES

(a) In region I the negative damping drags the particle
towards high-energy regions where the potential is dominat-
ed by the transformation potential. Consequently the
asymptotic motion corresponds to that of a free particle.

(b) In region I1, although the transformation potential is
now repulsive, the negative damping imposes again an
asymptotic free particle motion.

(c) In region III the damping becomes positive and two
different classes of particles must be considered.

Particles of the first class whose initial energy is large
enough to pass the total potential barrier will experience as-
ymptotically the transformation field alone, i.e., their
asymptotic motion corresponds again to that of a free parti-
cle. Particles of the second class with small initial energy will
be trapped, damped, and will fall towards the origin. To ob-
tain more useful information on their behavior, go back to
Eq. (9) and select now 4 and C such that
A=C={1+02:)»"+2 We have

d2§+p(p_1)

dé* n4+2\n+2
X 02? L £
1+ [(n+2—2p)/(n+2)]1026°
+ Kn(sgn §)|E "' =0, (12)

FIG. 1. Potential profiles for the eight regions. ------ rescaled physical, -.-----
transformation, total. Above the region’s number the sign of the
friction term is indicated.
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FIG. 2. The eight regions and the four zones of the n-p parameter space.

the new time @ varying now from 0 to « . The transformation
field in Eq. (12} tends asymptotically to zero and the final
motion is periodic. These particles are consequently trapped
in the K |£ |" potential and the amplitude of their oscillation
in x space increases ultimately as (1 + £2¢ )" 2.

(d) In region IV the transformation potential is attrac-
tive; no particle can escape and the asymptotic motion is the
same as the motion of the trapped particle of region III.

(¢) In region V the damping is positive, bringing the
particles towards the & — O region where the dominating
field is the transformation field. Consequently the asympto-
tic motion corresponds to that of a free particle.

(f} In region VI the damping being still positive, the
particle is driven to the bottom of the potential which is now
at a finite distance + &;. The asymptotic motion is conse-
quently

x= +&(1 4 Q) 2Vn=2, (13)

{g) In region VII the friction is negative again and the
dominant field is the rescaled physical field. To gain more
information we select 4 and C as in (c) to obtain Eq. (12).
Since n + 2 > 2p, the new time & goes from 0 to « and in this
(£,0) space the asymptotic motion is a nonlinear periodic mo-
tion with constant amplitude. In x space the amplitude in-
creases as (1 + £2¢ /" + 2.

(h) The same asymptotic motion is obtained in region
VIII. Finally the eight regions can be grouped into four
zones.

—Zone 1, union of regions I, I, and V where the
asymptotic motion corresponds to that of a free particle (uni-
form motion with uniform velocity).

—Zone II {region III) where the asymptotic motion
corresponds either to that of a free particle or to a nonlinear
oscillation of amplitudes growing as (1 + £2¢ 7" +2.

—Zone III, union of regions IV, VII, and VIII where
the asymptotic motion is a nonlinear oscillation growing
again as (1 + Q¢ p/"+2,

—Zone IV, region VI, where the asymptotic motion is
given by Eq. (13).

It is worth noticing that the linear oscillator case (n = 2)is a
degenerate case for which zones II and IV disappear. It
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should also be pointed out that the limiting casep = n/2 + 1
corresponds to a damping equal to zero with Eq (11) written
as
d¥ _£°
do? 4
Equation (14) can be integrated taking into account the fact
that the new energy is a constant
1 ( dé )2 n?_,
—_ | —= [ + K "= €. 15)
() - ek (
This limiting case is interesting since it shows clearly how
the method can be linked to the stretching (or dilation) group
technique.” Rewriting the initial equation (8) as
d*x 1 ( T ) —P
—— + Kn(sgn x)|x|" — =0 (16)
= (sgn x)|x| T

with ashifted time7suchthatr =t + 7=t + £ ', wecon-
sider the stretching transformations

& +Knlsgng)g|""=0. (14)

r=a, x=d’Xx
which leaves Eq. {16) invariant if we take f/a = (2 — p)/
(2 — n). Now the existence of such a transformation allows
the reduction of the second-order differential equation (16)
to an equation of the first order {see Ref. 4 for details) taking
as new variable £ and new function D (£ ):

\-C-prz—n
§=x ? s

s\ r—-p/2—n
) : (17)

dx
D) dt ( T
Notice that £ has a priori nothing to do with the one intro-
duced in Egs. {3) and (10). The new equation is obtained by
computing d¢ /drand dD /dr [where we replace d *x/d7* by
its value given by (16)]. Forming dD /d¢&, we check that 7 does
not appear any more in the final first-order equation

pdD 1 pn—p 2-p,dD
d T 2-n 2—n d&
+Knfsgn )5 "' =0. (18)

A further integration can be obtained if the second term of
the lhs of Eq. (18) is a total differential, i.e., if p = n/2 + 1.
For this particular value of p we have a time invariant:

I1D? + K |£|" — (1/2T)DE = const . {19)
Introducing in Eq. (19)

n=D— & /2T, (20)
we rewrite Eq. {19} as

}* — (2%/8)6% 4+ K |£]" = const. (21)

It is easy to check that for p = n/2 + 1 and £ and 7 as given
by relations (17) and (20), we can also write

i=(3)

n=(1+0p2 2
dt

/2
=x(1 +02¢)" V2,

0
_2’.‘-(1 +026)7172, (22)

For this value of p, parameters a and ¥ of Eq. (10) take the
value 1/2. Introducing all this in Eq. (3) we check that £ and
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7 = dE /d@ as given by the quasi-invariant theory are identi-
cal with those defined in Eq. (22) and that the constant [in
Eq. (21)] can be identified with the new energy of Eq. (15).

IV.ADIABATIC ASYMPTOTIC AND EXACT INVARIANTS
A. Case p < p_ adiabatic invariant

Consider Eq. (12) obtained by taking 4 = C (this
problem is consequently without damping) and C =
(1 + £2¢ /" *+ 2 leading to time-invariant rescaled physical
field. The transformation field goes to zero provided p < p,
=n/2 + 1. If 2 — 0 the transformation field not only goes
tozeroasd — oo butisof order 2 2 The unperturbed motion
£, obtained from setting {2 = 0 is a periodic motion corre-
sponding to the potential K |£ |”. In this unperturbed motion
the (new) energy is conserved. The energy variation connect-
ed to the presence of the time-dependent transformation
field is

A6=p(n+2_p) 02

(n+2)°

X j £ dt, dé. (23)
o (1+ [(n+2—2p)/(n+2)1026) do
It can be shown that in the limit {2 — O the integral in Eq.
(23) goes to a finite limit and 4e s finally a quantity of second
order in £2. The new energy is consequently an adiabatic
invariant to zero and first order in £2.

Notice that
KlE|"=k|x"(1+£2¢)#1 +.0t)2"/‘”+2’. (24)
By Eq. (4) we deduce
c
2 dt dC\?
vi=Llogp & 2(——) 25
el 51 C +¢& dt (25)

The first term in the rhs of Eq. (23) is of order £2 °, the second
of order {2, and the third of order {2 2. We can write, neglect-
ing terms in {2 and 22

L V4K |x|"(1 +026)77
=17+ K[| +0r) 72000+, (26)

Finally we define the length of the “expanding box” for a
time varying potential through the relation

é(x,t) = |x|"(1 + 2t)~? =B ~?$ (x/B), (27)

with B = (1 + 2¢)" = C. Identifying we find y = p/(n + 2).
Later we will justify relation (27) but the result is quite rea-
sonable since we know that the rescaled quantity £ = x/Cis
periodic and that the particle “bounces” on the time-inde-
pendent potential in £ space. Now Eq. (26) can be written

LV*+K|x|"(1 4 £2t)" 71> =4, (28)
where / = C(t) I, is the “length of the box.” Equation (28} is
the well-known “adiabatic relation” between the energy and
the volume (i.e., the length for a one-dimensional system)
with ¥ = 3. Two final remarks are in order.

Remarks: 1. The “new energy €” is a better invariant
than EI * since € is invariant to zero and the first-order term in
£, while in the computation of E! > we have dropped first-
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order term [the second term in the rhs of {26)].
2. This invariant never breaks down.

B. Case p <p_ asymptotic invariant

If £2 is no longer small we can call € an “asymptotic
invariant,” i.e., a quantity which remains constant for a long
time. The only difference with the case £2 — 0 is that the
work done by the transformation field vanishing as time goes
on is not a small quantity.

Moreover, Eq. (28) remains asymptotically true. It was
obtained by transforming € into the energy in the initial
space through relations (24) and (25) and by neglecting in Eq.
(25) the second and third term of the rhs. This remains true
for large times for all values of {2, a result easily checked
since

C =2 varies as (14 £2¢) 2202

1 dC
— == variesas {1 +f2¢t)7,
C dt ( )
2
(idg) varies as (1 + £2¢ )"+ 2,
t

To sum up these results: for p < p. we can introduce either an
adiabatic invariant (if 2 — 0) or at least an asymptotic invar-
iant which in both cases is the new energy.

C. P=p;

For p =n/2 + 1, Eq. (12) and (11) are identical. They
have no friction term, a time-independent potential, and the
new energy € is an exact invariant. The length of the box
varies as (1 + £2¢)"/?, the energy decreases asz ~'. The possi-
bility of finding invariants for similar equations has been also
considered in Ref. 5.

D.n> p> p.

This case correponds to region VI where |£ | goes to a
limiting value |£,|. From Eq. (13) we can write asymptotical-

ly

-;— VE+K|x|"{l41)=°

2
z(_%_é-lz (P—i) 02+K|§1|n)(1 +0t)2(pAn)/(n——2l.
(29)

Equation (29) shows three interesting points.

—In region VI the asymptotic motion corresponds to a
fixed ratio between potential and kinetic energy.

—for p = p, this relation agrees with relation {28) and
leads to a total energy E varying as (1 + £2¢)".

—for p = n the energy is a constant. Indeed for p > n the
asymptotic motion corresponds to that of a free particle.

V. CASE OF AN EXPANDING BOX

An interesting limiting case is provided by a box made
of a potential well (zero potential inside, infinite potential
outside the box). The abscissa of the two walls are, respec-
tively, + /, (1 + £2¢)*. {For a solution of the case @ = 1 see
Ref. 6). The particle experiences a perfect elastic collision on
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the moving walls and a free motion otherwise. It can be easi-
ly shown that such a situation corresponds to a potential as
given by relation (1) with p and #» —» « and p = na. In this
limit Eq. (11) becomes
d*
do*
and is valid inside the “new motionless box” extending from
— Iy to I,. The scaling factors are C(t) = (1 + 2¢)* and
A (1) = (1 + £2¢)"2. Four cases must be investigated.

+(2a-—1).{2§%+a(a—1)f22§=0 {30)

Ala<1/2

This corresponds to region VII. In that case it is simpler
totake 4 (t) = C(z) = (1 + £2¢)* and write the limit form of
Eq. (12),

2
d §+a(a—1).(12 s =0. (31)
d6’ (1+(1 —-2a)26)
In the “new box” the asymptotic motion is an endless bounc-
ing on the two walls. If {2 — O there exists an adiabatic invar-
iant which never breaks down and if £2 is finite an asymptotic
invariant.

B.a=1/2

Both Equations (30) and (31) show the existence of an
exact invariant, the new energy is

1(d§)2 n: .,

e=—|—=) ——£&° 32
2 \do 8 § (32)
C.l1>a>1/2

The description is given by Eq. (30). In the “new box”
the particle sticks asymptotically to one of the wall. In the
original space this means that eventually after some oscilla-
tions, the particle bounces on one of the walls without chang-
ing the sign of its velocity. Since the wall velocities decrease
with time a new bouncing takes place, slowing down the
particle but never changing the sign of the velocity, etc.

D.a>1

In the “new box™ as given again by Eq. (30) the particle
falls down to £ = 0O corresponding to a free motion in the
original space. Indeed after a transient state the wall veloc-
ities increase without limit and the particle does not collide
any more.

Vi. QUANTUM MECHANIC INTERPRETATION

We have seen that the case p = n/2 4 1 corresponds to
a critical regime where we have an exact invariant. In fact it
is worth noticing that this case corresponds to the possibility
of obtaining a solution of the Schrédinger equation via
stretching groups. This last equation reads

7O _ _ Y
i# = 2m + & (x, 7). (33)

Notice that when we use stretching group methods we come
back to the shifted time 7 =+ T'=¢ + £2 ~ ' as in Sec.
1I{h).

A nontrivial stretching group leaving Eq. (33) invariant,
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r=4a“ 7_', X = aﬁJ_C, ¢ = ayay and ¢ = a‘sl—ﬁ’ (34)

is given by

where the last relation comes from the normalization condi-
tion

f!ﬁl//‘ dx=1.

Equation (35) indicates that if we introduce the new variable
and functions

e (Deao(l) e

the Schrbdinger equation becomes

ifi ( L dﬂz) # d
T 2 dx 2m d

(# and ¢ being functions of x only). The first two equations
(36) are equivalant to £ = x=x/C (7) and to Eq. (27) where
wetakefor C (7)thelimitingcase C (7) = (7/T)"/2. Inthiscase,
¥ keeps its initial shape which implies variation of both the
kinetic potential energy inversely proportional to the square
of the length of the system. It is quite remarkable that the
invariance of the quantum equationleadsto¢ = (7/T) " '¢x/
(r/T)"?, i.e., the critical case leads to a definition in agree-
ment with Eq. (27). This last equation was needed to write
down the well-known relation (28). This deep and subtle re-
lationship between quantum mechanics and the theory of
invariants was noticed at the very beginning of quantum me-
chanics and still remains somewhat mysterious.

Finally for a class of potentials of the form
$lxt)=C 2 (x/Cl1)), (38)
we have shown® that by taking x = £C(t) and d6 = dt /C*

[i.e., 4 = Cin Eq. (3)], the new Schrodinger equation can be
written in the new space time as

"” +é0 07

2 O0u ﬁ Fu 1 5d°C ’
mdh— Ik L+ (dr+5C 4 e
(39)
where
12 m 1 dC 2 40

and with f¢Y¥* dx = [ yu* dé = 1. Some remarks on how

these equations are obtained are given in the Appendix.
Now for a potential given by Eq. (1) we substitute

C = (1 + £2¢P""*in Eq. (38). For p < p, the potential as in

the classical case can be written as the sum of the rescaled

physical potential X |£ |" and the transformation potential

_I_L(__E__l)gzéd
2 n+2\n+2
1

% (1+ [(n+2—2p)/(n +2)]026)*
Equations (31) and (41) are the quantum mechanics equiva-
lent of relation (12), forp=p. =n/2 + 1, C = (1 + Q2¢)'/?,
and ¢ = (1 + 2¢)™ V% exp i{m/#)(2 /4)€ *u. A little algebra
shows that the time-independent solution of Eq. (39)

(3 /96 = 0) is identical to the self-similar solution obtained

(41)
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from Eq. (37), since
¥ =P(1+026)7 V= (1 4 02t)7 " expli{m/A)2 /8 (€ ).

VII. CONCLUSION

In this paper we have used the quasi-invariant tech-
nique to obtain the asymptotic motions of a particle in a
potential of the form K |x|" (1 4 £2¢) ~?. Four zones are de-
lineated according to the values of p and », a critical value
being p. = n/2 + 1. From these solutions we studied the
possible “asymptotic” (valid only for large time), “adiaba-
tic” (connected to a smallness of £2), or “‘exact” invariants.

For p < p. we have an asymptotic (for finite £2 ) and an
adiabatic (for 2 — 0) invariant. This last invariant never
breaks down and correponds to the relation EI/ > = const,
where E is the total energy and / is a natural length of the
“box.”

For p < p. < n we have an “asymptotic invariant” but
the corresponding relation is E (1 + £2¢ )" —#/" =2 — const.
The adiabatic invariant initially present if £2 is small enough
breaks down for large times.

For p > n the particle, asymptotically, is not submitted
on the field.

Finally for p = p. we have an exact invariant. It is inter-
esting to notice that the critical case corresponds to a length
of the box increasing as (1 4+ £2¢)"/2 and to the existence of a
self-similar solution for the quantum problem. This length
increasing as (1 + £2¢)'/? corresponds to the quantum invar-
iant /2/t = const, a consequence of the Schrédinger equa-
tion.

APPENDIX: QUASI-INVARIANT TRANSFORMATIONS
IN QUANTUM MECHANICS?

For classical motion of a particle we have considered
the following transformation

x & x=C(t)+Dit),

vy 3 7)} with v = (C/4 %)y + C£€ + D,

t 6 dt = A7d6.

Notice that we have introduced the shift D (¢} where D is an
arbitrary time function.

We want to determine if there exists a corresponding
group transformation in quantum mechanics—compatible
with the correspondence principle. More precisely we con-
sider a wave function ¢(x,t ). Is it possible to transform it into
a function $(£,8 ) with

Yix.t) =@ (x.1 JYEB), (A1)

dt = A%(t)do, (A2)

x=C(t)§ + D)), (A3)
such that

f Ylx,2 JP*(x,t Jdx = f WEWHEE =1, (Ad)

(x) =fx¢¢" dx=C@t &) + D), (A5)
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(€)= [ g as (A6)
<u>=_%f¢*%dx=A—Cz<n>+c<§>+b, (A7)

(n) = —%ﬁ*g—gda (A8)

we can suspect that C = C; and D = D, if such a transforma-
tion satisfying the correspondence principle exists. But it is
more rigorous to verify that it is indeed needed. Equations

(A1) and (A3) are introduced in Eq. (AS) and we write that

the equality must be verified V¢/. We get

C(t)=¢¢*C3, D=D, (A9)
Introducing now (A1) and (A3) in {A4) we obtain
¢ *C, = 1. (A10)

From Egs. (A9) and (A10) we deduce C, = C, D, = D. Now
from Eq. (A10) we deduce

¢=C""2expiB(£,0), (Al1)
where B is real. Now we introduce (A11) and (A1) into (A7)
and obtain

PN R R )
mc J¢ a§d§+mC Yy dg

9
C ) - .
=7<77)+C §Y*yds + D.
This is an identity for all possible . Consequently
C # 1 JB

C '=-—and = =—"—"—=C¢+D. Al2
A? m C J9¢ s (A12)

From (A12) we deduce C = 4 and
B =(m/2#H)CCE? + mCDE + F(t). (A13)

We can state the following proposition.
The most general quasi-invariant transformation in
guantum mechanics for which the correspondence principle
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leads to the transformation indicated at the beginning of this
appendix is given by

x =£C(t)+ D),

dt = C¥t)db, (A14)

¢=C_1/2 expl(%CC§2+mCD§+F)'—p(§’0)

We see that in the quantum case we must restrict ourselves to
the case C = A4 which corresponds in classical mechanics to
the conservation of the phase-space volume element. This

condition ensures that the x-p commutator is invariant with

[x,mv] = [£mn] = if.

We must stick to the Hamiltonian formalism and cannot
introduce a friction term as in the classical case. We have
demonstrated elsewhere’ that indeed ¥ does satisfy a Schro-
dinger equation with a new potential given by

v=C?¥ 4 (m/2)C3CE* + mC>DE. (A15)
Other terms can be introduced in (A 15) but being space inde-
pendent they do not play any role and introduce simply a

space-independent (and consequently unobservable) phase
shift in ¢.
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Complex-potential description of the damped harmonic oscillator
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The multidimensional damped harmonic oscillator is treated by means of a non-self-adjoint
Hamiltonian with complex potential. The propagator referring to the evolution semigroup is
evaluated from the Lie-Trotter formula. The one-dimensional case is discussed in detail with the
following resuits: (a) the nondamped limit gives the correct propagator including the Maslov
phase factor, {b} for some initial conditions, the classical limit of the solution can differ from the
behavior of the classical damped oscillator, the difference being negligible in the case of weak
damping, and (c) the point spectrum of the considered pseudo-Hamiltonian is found.

PACS numbers: 03.65.Ge
1. INTRODUCTION

There is a large number of problems ranging from ele-
mentary particles to statistical physics, in which the consi-
dered systems are dissipative (cf., e.g., Refs. 1-5). The dy-
namics in such cases can be rarely described fully, including
interaction with the heat reservoir (decay products, com-
pound nucleus channel, etc.); usually one is forced to express
influence of these degrees of freedom by means of pheno-
menological Lagrangians or Hamiltonians. They can be con-
structed in different ways: as time-dependent, nonlinear
{e.g., Refs. 3 and 6) or non-self-adjoint; in particular, Hamil-
tonians with complex potentials are popular in practical cal-
culations in nuclear physics.

Recently we have shown how to incorporate descrip-
tion of a dissipative system S via a phenomenological non-
self-adjoint Hamiltonian H into the standard quantum theo-
retical framework.” If H is closed and iH generates a
continuous contractive semigroup (such operators we called
pseudo-Hamiltonians), then by minimal unitary dilation of
this semigroup we obtain objects which are naturally inter-
pretable as the state Hilbert space of a larger isolated system
2 containing S and the unitary evolution group of 2. The
well-known difficulty with the spectrum of the correspond-
ing total Hamiltonian (see Refs. 4,8 and references therein)
means that the semigroup evolution of § is necessarily ap-
proximative’; however, this approximation is good enough
for almost all applications.®!°

In the present paper, we apply the pseudo-Hamiltonian
approach to the case of multidimensional damped harmonic
oscillator. There are, of course, many possibilities how to
choose H; some complex structures have been already stu-
died.'' We shall use the most natural choice H = — 14 + x.
{4 — iWx, where A, W are strictly positive matrices (strict
positivity of 4 is assumed for convenience, in fact, the proofs
can be carried out for positive 4 as well). We assume neither
a time-dependent frequency,® nor any driving force, stochas-
tic or not.*!? On the other hand, we consider oscillators of an
arbitrary dimension d; the generalization to the d > 1 case is
nontrivial, because 4, W need not be simultaneously diagon-
alizable. This multidimensionality together with the special
choice of H could be of some interest for the old problem of
constructing a field theory with basic quanta metastable.

2 On leave of absence from the Nuclear Centre, Charles University, Areal
Troja, 18000 Prague—Pelc-Tyrolka, Czechoslovakia.
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One has to check first that our H is a pseudo-Hamilton-
ian in the sense of the above definition. If the damping part
could be regarded as a perturbation to the undamped oscilla-
tor, the Kato—Rellich-type lemma would be applicable. In
general, however, it is not so. Thus we use a trick based on a
successive application of the lemma; this trick might appear
to be useful for some self-adjointness proofs too.

The main result of the paper is an explicit integral-oper-
ator expression of the evolution semigroup corresponding to
H. After some preliminaries, we prove it in Secs. 5 and 6. The
method is based on Feynman-type path integrals in the sense
of Nelson, i.e., defined by the Lie-Trotter formula.'>'* The
same result, however, is obtained with some other defini-
tions of the path integral, for instance, the one of Tru-
man'*>'® or that using the “uniform” Trotter formula.!”

Discussion of the obtained results is limited in the pre-
sent paper essentially to the one-dimensional case. The first
problem concerns the nondamped limit: we show that it
gives the correct Feynman propagator including the phase
factor'®'%; thus we find in the present case an alternative and
very natural way of deriving the Maslov correction. Further,
we shall discuss the classical limit. Let us notice that com-
paring to common practice>''%2°2! we did not obtain our
pseudo-Hamiltonian by some kind of quantization of the
classical damped oscillator (CDO). According to our opin-
ion, such an approach makes sense only if there is a reasona-
ble similarity between the classical and quantum mechan-
isms of damping. In general, this is not the case; thus there is
no a priori reason why the classical limit should reproduce
the exact behavior of CDO. We shall illustrate it on an exam-
ple: for our damped oscillator and special Gaussian wave-
packets, the classical limit gives trajectories of CDO but cor-
responding to changed initial conditions; the difference
vanishes in the weak-damping limit. Finally, we shall find
the point spectrum of H, which is of the form of the un-
damped-oscillator spectrum rotated around the origin to the
lower complex half-plane. The eigenvectors, however, are no
longer orthogonal because H is not normal.

2. SOME NOTATION AND CONVENTIONS

d
0°= 302

Ji=1

where (Q;#)(x) = x;(x),
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d
P?= 2P ;= —A4,
i=1
where P, = F ; 'Q,F, and F, is the d-dimensional Fourier-
Plancherel operator,

vi(x) = xAx, v,(x)=x-Wkx,
where 4, W are real positive symmetric d X d matrices (more
exactly, positive symmetric operators on R%) and

v(x) = v,(x) — iv,(x) = x-Bx,

VilVadlx) = vixglx), V="V, —ib,,

H, =P +V,

H,=H, U’(R"), Hy=H,—iV,=H FY(R“),

H=H,—-i¥V,=iP* 1V,

M () is the set of all {finite) complex Borel measures
on a real Hilbert space 57,

F () is the set of functions £ £(y) = f 5-expli(v,’)
auy’),
where ue.#(5¢) and (.,.) is the inner product in 57°.

In what follows, square roots of complex numbers and
matrices will appear frequently. It is useful to make an overal
choice of the branch: we prefer to work with (¢?)'/2

= expllig ), 0<@ < 27. There is a particular case which
should be mentioned: when complex frequencies are consi-
dered, it is more natural to have their real parts positive, at
least from the viewpoint of the nondamped limit. We shall
use therefore 2 = — (2B )/ with the square root under-
stood in the above sense.

3. THE PSEUDO-HAMILTONIAN PROPERTY OF H

As mentioned above, through this section we assume
the matrices 4, W to be strictly positive (as operators on R9).
The eigenvalues of 4 are a;, j = 1,...,d, s0 @ = min, ;4 @;
> 0. The inequalities

Q<[ Vigll?
= ¥ aal Q<4 |1yl

M=
show that D (V) = D (Q %), analogously D (V,) = D (Q ), i.e.,
D(H)=D(H,)=D(P*nD(Q?. (1)

Proposition 1: H| is self-adjoint.

Proof: We notice first that H, is essentially self-adjoint
(e.s.a.) due to existence of a complete set of eigenvectors
C #(R9. Both P? and V', are self-adjoint and therefore
closed so that H, C H,. In order to prove the opposite inclu-
sion we shall verify that there is b > O such that

HIPI + IV lP<iHopl2 + 6 1917 gefRY). (2)
We have (P, ¥)(x) = — idy(x)/3x, for these ¥, 1.e.,
(P,Q: — QuP))x) = — i Yix)ix), ye s (R?). (3)

We choose a basis in R? so that 4 is diagonal. Then

PV, + V\P 2)¢)>_Zlaj(¢,(Pfo + QP

because (¥,P}Q ; #)>0forj#k due to the relations (3), which
further imply
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(B(P?V, + V,P )

d
>1 > a P70} + O 2Pl — Hiigi*Tr 4.

=1
Thus (2) holdsif >3 Tr 4. Assume now yeD (1_12). If{y,]isa
sequence C .#(R”), ¥, —, then { H,4, } converges too, i.e.,
|2, — Ho4p,, ||-~Owithn,m— . The inequality (2) shows
that also { P2y, } and { V¢, } converges, however, both P?,
V, are closed and #(R?) CD (P%)nD (V) so that
yeD (P*)nD (V) = D (H,). u

The pseudo-Hamiltonian property of H will be proved
below by successive applications of the following perturba-
tive lemma?®?;

Proposition 2: Let G be a densely defined closable opera-
tor on a Hilbert space 5 such that G is a pseudo-Hamilton-
ian. Let further Cbe closed and accretive, D (C ) DD (G), and
assume that there exist non-negative a < 1, b such that

ICYIP<a®|GYI* + 67(14||>, ¥eD(G). (4)
Then D (G )C D (C) and the operator G — iC defined on
D (G) is closed and belongs to the class of pseudo-Hamilto-
nians.

One must exhibit conditions under which (4) is fulfilled
in the case under consideration:

Proposition 3: (a) Let b><a||W || ™', then there is a posi-
tive ¢ such that

6V ¥l <HIH I + cll¥ll”, ¥ (R7). (5a)

(b) Let a > 0 and b *<la’, then there is a positive ¢ such
that

16V <3l (Hy — iaVao)yl)* + cligll®,  pe s (R). (Sb)
Proof: We have to find ¢ for which
I=(,((H, + iaV,)H, —iaVs) — bV + c}¢)
is non-negative independently of y€.%(R“). We choose again
a basis in R? so that 4 is diagonal and denote by W), the
corresponding matrix elements of W. Expressing
(V,P? — P*V,)pand (V,P? 4+ P2V,)¢ from (3) and omitting
the positive term }(1,P ‘), we obtain

I>(¢,[é_§d: @(P.Q, + QP —1Trd + 5(j§d:anj)z

=1 =1

rer =57 3 w0

vk =1
d
&S WulPuQ, + QP e
4,0
Assume first @ = 0 and b *<la|| W ||, then the last inequa-
lity yields
>, [c — 3 Tr A
+ (Ja — bW NQ*1¥)>(c — 3 Tr A)||¥|°
so that (5a) holds if >3 Tr 4. On the other hand, if 2°>2b7?,
then
d
Y UARDY (8e;) " (a;(PQ; + QPs)
Jok =1
d
—aW, ) —ia* 3 o "W,

Qhk=1

+c—3Tr4 1Y),
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d
and therefore (Sb) holds if c>3 Tr 4 +1a° > o *W,.
k=1

Combining now the above three auxijliary statements,
we can prove the main result of this section:

Theorem 1: Let A, W be strictly positive so that (1)
holds, then H is closed and belongs to the class of pseudo-
Hamiltonians. Moreover, ¥ (R%) isa core for H,i.e., H = H,.

Proof: (a) If a>2||W ||, then there is ¢ > 0 such that (5a)
with & = 1 holds. The operator ¥, is positive, and therefore
accretive, D (V,)DD(H,),and H, = H, is a pseudo-Hamil-
tonian due to Proposition 1. Applying then Proposition 2 to
G = H,, C = V, we see that for H = H, — iV, the assertion
is valid. (b) If & < 2|| W || we choose & positive, 2|| W ||k *<a,
and » natural so that

k(1+2—1/2)n—1=1. (*)
The same argument as above shows that the operator
H, — ikV, with the domain D (H,) is closed and belongs to
the pseudo-Hamiltonian class. Moreover, this operator
equals H, — ikV,: obviously H, —ikV, CH, — ikV,; on
the other hand, for an arbitrary gD (H,) and a sequence
{@.] CF(R?), p,—@, we have
(H, — ikVy)p, = H @, — ikV,p, so that geD (H, — ikV,).

(c) The proof is completed by induction: assume that the
assertion holds for H,;, = Flzj, where X H; = H, — ik
X (1 + 272y~ '¥,. The assumptions of Proposition 3(b) are
fulfilled for @ = 2"/2b = k{1 + 2~ '/2y = !; thus (5b) together
with Proposition 2 imply that the assertion holds for

Hy,— k27" (1 427V~ '=H,;,,

as well. In the same way as above one proves

H,;,, =H,,, . Since the assertion is valid for H,, = H,,
due to (b), the same is true for H,; corresponding to any
natural j, in particular for H,, = H,, which equals H = H,
in view of (*). B

4. AN AUXILIARY INTEGRAL FORMULA

In the next sections, the following integral will be useful

IuiMon) = | explLeng + ig) de, 6

where M is a symmetric N X N matrix the imaginary part of
which is assumed strictly positive, Im £-M& >0 for each
nonzero £eR”, and 5eC".

Proposition 4: Under the stated assumptions, the inte-
gral (6) equals

Lo(M.7) = (2mi)" *(det M)~ exp( — —1-M ~'n].(7
Proof based on analytic continuation®: we denote
M, =AM, + iM,, 5, = An, + in,, where
M, =ReM =M+ MT), etc. sothat M =M,, 7 =17,.
Due to the assumption, eM, + M, is strictly positive for all
real € with small enough modulus. Thus there is €, > 0 such
that 7, (M, 1, )existsinthestripS = {1:|]Im A | < €,}. More-
over the function A—1, (M, ,7,) is easily seen to be analytic
in S.** For each A = ¢, |€| < €, one can choose a basis in RY
in which M, is diagonal so that by Fubini’s theorem we
obtain?’
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j=1

1Mo =TT [exolomié? + i3] ds
R

N .
= [] 2mim; l)”Zexp[ — Lmj‘ ‘z}],

j=1 2
where m,,z; are eigenvalues of M, and components of 7.,
respectively. Then due to the proved analycity, (7) holds for
all M, ,n, with A&S, in particular for 4 = 1.

5. THE PROPAGATOR

The continuous contractive semigroup corresponding
to our pseudo-Hamiltonian H can be expressed explicitly.
This is the content of the following theorem which will be
proved in the next section:

Theorem 2: Let A, W be strictly positive and denote
02 = —(2B)"? B=A — iW. Then for each >0,
exp( — iHt) = V,, where {V,:#>0} is a contractive semi-
group which acts on an arbitrary €L *(R?) according to the
relation

Vol = [ Glxsp )y, £>0, (8a)
G, (x.y) = (2mmi) ~*/(det(2 ~" sin £2¢))~ 12

X exp[%[x-(ﬂ cot {2t )x + y-(£2 cot £2¢ )y]

— ip(2 cse 2 )x). (8b)

One has to verify first that (8) makes sense:

Lemma 5.1: Let A be positive, W strictly positive, ¢ > 0;
then {2 is regular and the real quadratic forms x— Im x-Mx
with M = — 2 ~'tan 2t, — 2 tan £2¢, and {2 cot £t are
strictly positive.

Proof: Suppose firstd = 1. We have 37/2<arg B <27
due to the assumption so 0 < v<w hold for 2 = @ — iv. The
—Im 2 ~'tan 2t = C(t) (@ tanh vf cos~? wt — v tan wt-
cosh™2 vt) with C(¢)> 0, and the inequalities ™" sin

<1<pB ~'sinh B for nonzero a,f imply

—Im 2 ' tan 2¢
= C (t)[2t cos? wt cosh® vt ]~ '[wt sinh (2v2)
— vt sin(20t )] > 0. (*)

Analogously we obtain positivity of Im {2 cot £2¢ and
— Im £2 tan £2¢. Asfor the cased > 1, regularity of 2 follows
from symmetry of £2, which gives |£2x|> = x-Bx, and from
strict positivity of W. A real quadratic form is strictly posi-
tive if all eigenvalues of its matrix are positive.?® They equal
—Im w;” ' tan w;¢ in the first case,’” where w; are eigenval-
ues of £2. Further, each eigenvalue 8, = Jw; of B satisfies
Im B; <O; otherwise y-Wy = —Imp, | y|?<0 for some non-
zero y in contradiction with the assumption. Thus (*) gives
— Im w;” ! tan w;# > Ofor all j; in the same way the assertion
is obtained for the other two forms. [ ]
Lemma 5.2: Let A,W be as in Lemma 5.1, then
det(£2 ~ ' sin £2¢) and det(cos £2¢) are nonzero for each 7> 0.
Proof: 1t is sufficient to check that all eigenvalues of
both the matrices are nonzero: they equal w,” ' tan ;¢ and
cos w;t,j = 1,...,d, respectively. Further, Im B; <0 implies
Im w; #0, but sin and cos have no zeros outside the real

axis. B
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Proposition 5: Let A,W be as in Lemma 5.1, let further
V, be given by (8) and ¥, = I. Then { ¥,:r>0} is a semigroup
of bounded operators on L *(R9).

Proof: According to Lemma 5.1 there exist positive ¢;,c,
(depending on ¢ ) such that

|G, (x.y)|<c, exp( — co(x* + 7). (%)
This inequality together with the Fubini theorem imply

Vo lP<ct [ Jooillg @)
X exp( — ¢,(2x* + y* + 2°)) dx dy dz,

so integration over x and the Schwarz inequality gives

Wgli<e( =) el (10

2
for each geL *(R?). As for the semigroup property, in view of
V, = I and of (9) it is sufficient to verify

G, .x2) = [ GLxnIGi2) dy

for all ¢,5 > 0; it follows from Proposition 4 with
M = (2 (cot £2t + cot £25), n = — L2 ((cosec L25)x
+ (cosecs2t )z) and from the matrix functional-calculus ru-
les.”’

The following equivalent expression for ¥, will be use-
ful:

Proposition 6: Let A,W be as in Lemma 5.1; then for all
>0 and geL %R

Vg )= [ FlxolEap ) b, (11a
F,(x,y) = (2m) ~ ¥/(det(cos £2¢ )~ /2
Xexp{ — (i/2)[x+({2 tan £2¢ )x
+ y-(£2 7' tan 2t )y} + ip-(sec 2t )x], (11b)

where F, is the Fourier-Plancherel operator.
Proof: Let first 7 (RY)NL (R, @ (x) = J‘ e™¥dv(y) with
Rd

ve.# (R%; then (11a) can be rewritten as

(V@ )ix) = 2m)*/ ZLdF,(x,y) anly). (12)

In order to prove this, we use (9) together with boundedness
of @, |@(x)| <|v|(R). Then the Fubini theorem applied to (8)
gives (12) with

F(xy)=(2m)~ ‘”Zf dG, (x,2)e”* dz
— (472i)~7(det(2 ~ " sin Q1)) /2
X exp{(i/2)x-({2 cot £t )x}

d4({2 cot £2t, y — (£2 csc N2t )x).

Using now Proposition 4 and the matrix functional-calculus
rules, we get (11b). Let us assume further an arbitrary
@eL }(R%), and construct the following sequence:

@, inlx) = (27) f 3, ) dy,
]Rd
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(Fa@ ) y|<n  and |(F,@)p)i<n,
P.y)=1n vl<n  and  [(F,@)p)|>n,,
0 e l>n

Clearly F,@, = @, and @, €L (R% so the assertion is val-
id for @,,. The sequence {@, } converges pointwise to F,@ ;
further, |3, (¥)|<|(F,@ )v)| and F,(x,-)eL }(R¥) so that

lim (V,,06) = | F.x)Ea ) . (++)

n—oo

One verifies easily that $, —F,¢ in the L >-norm too. Since
F, is unitary and ¥, is bounded due to (10), we obtain
V.9.—V,@; then there exists a subsequence { ¥, ¢, } which
converges to V,¢ pointwise and the assertion follows from
(tt)_

In order to prove Theorem 2 in a straightforward way,
one has to check first strong continuity of { ¥, } or equiv-
alently?®

lim (0V.9) = () (13)

for all ¢, peL *(R¥). Further, the generator of { ¥, } must be
calculated and shown to coincide with H. Proposition 6
shows that (13) is valid for ¢, geL *(RY)nL (R“). Using further
the matrix functional-calculus rules, one can verify that for
pe7 (RY, ¢pix,t) = (V,f)(x) solves in R? X (0, oo ) the Schro-
dinger equation with potential v(x} = Lx-f2 *x and initial data
@. However, the remaining part of such a proof seems to be
complicated, and therefore we choose another way: to ex-
press exp ( — [Ht ) and identify it with V.

6. exp( — iHf) BY LIE-TROTTER FORMULA

We shall assume again both 4, to be strictly positive,
t> 0, and abbreviate S|, = exp( — iH,t Jexp( — iVt ), where
H, = 1P? is the free Hamiltonian. Since iH = iH,, + iV gen-
erates a continuous contractive semigroup due to Theorem
1, the Lie-Trotter formula for semigroups asserts®®

s-imS';, = exp( — iHt). (14)
Our goal is to prove that the lhs of (30) coincides with V,. For
@eL *(R% we have®

;on—1

(sl = mis) [ exp|-L'S tre 1 = 7P

k=0

n—1

— i8> vi-BYi ]«p (Yo)dVo--AVn 15

k=0
where 7, = x and § = ¢ /n. Modulus of the integrand is ma-
jorized by |@(v,)lexp{ — 8 2% _ o ¥x- W7 }; thus, the rhs
makes sense and the integrations may be interchanged arbi-
trarily. Assume now g% (RY), @(x) = f.e”?dv(y), then
substituting ¥, = @,8'/%, k = 0,1,...,n — 1, and rearranging
the integral, we obtain

(S0 = 2m) =47 dvi) exp(S5° LoulM, ),
]Rd
(15a)
where 7 = (¥5'/2,0,...,0, — x6 /) and M,, = M,,(6) is the

nd X nd matrix
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—28°B  —1I 0 0
| -1 a-wE - 0
" 0 =1 U=20B I -
DI X ; :

which obviously fulfills the assumption of Proposition 4.
Thus one has to calculate det M, and the corner blocks of
M ' Letusdenoteby B, = A — iAW and M# the corre-
sponding matrix (15b). For small enough 8, there is €,> 0
such that M} isregularin.S = {1 #ie:|€|>€,}. Consequent-
ly,A—det N} and the matrix function A—{M,, )~ ! are analyt-
icinS. If A = i€, |€| < €,, one can diagonalize M # and calcu-
late the needed expressions. Continuing the results
analytically®® to the point 4 = 1, we obtain

(S7@)x) = (det[d (M, )])"”zf avly)

x exP[—Ex'd (M)~ [d(M, _,)

6 -
*d(Mn)]x~—yd( Y
xd(K, W+ iydM,)" 'x}, (16)
whered (M, ), d (K, _ ,) are the “block determinants” of M,
and its lower-right (n — 1)d X (n — 1)d submatrix, respec-
tively. They satisfy the relations

diK, )=@2-602°dK,_,)—dK,_;)
diM,)=(I-80% (K, )-dK,_,)
which can be seen easily to have the following solutions
_ 2 n+j) 2
K1) = 3 ly(2.+1 62,
awt,)= 5 (- 1" Yo
=0

Let us turn now to the limits. Assume first 8d(K, _ , (6)) with
& =t /n. This sum converges (because it is finite), further,

%d(K (n)) 0_12(2]4_1)! "J(DI)ZjH’

wherec,; = IV, _ (1 — k*n"?) 50 0<c,;<1 for all n, j, and
therefore the convergence is uniform with respect to #. Thus,
we have

lim 24 (K,, . (-’_)) — 0 sin 2,

n—w N n
similarly one obtains lim,, . d(M,,(t /n)) = cos 2t and
lim, . (n/t)[dM, _,(t/n))—d(M,(t/n))] = 2 sin 2.

These relations together with (16), (11b), and (12) imply
lim (S50 )(x) = (¥, ix)

for pe 7 (R")nL *(R%). On the other hand,
lim, . S, @ =exp(— iHt)p for these ¢ due to (14) so there
exists a subsequence {S'; @ } which converges to

exp({ — iHt ) pointwise a.e. in R?. Consequently, we have
V.p =exp( — iHt)p (17)
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(15b)

..........

for all g5 (RY)NL *(R). This set is, however, dense in

L Y(R9) (containing, e.g., /(R9) and the operators V,,

exp( — iHt ) are bounded due to Proposition 5 and Theorem
1, respectively. Thus, (17) holds for each geL %R too, and
the proof of Theorem 2 is finished.

7. THE NONDAMPED LIMIT AND MASLOV
CORRECTION

For the sake of simplicity we shall limit ourselves
further to the one-dimensional case. It is known that the
Feynman’s propagator formula for the nondamped harmon-
ic oscillator must be corrected by jumps in phase at every
half-period:

K.(xy)=K

where

1/2
K fey) = <2m')-”2(——. © )
| sin wt |

TyIM(e), (18)

><exp[25 x> +y )coscot—lxy]]
(18a}
M(t)=exp{—%iEnta—:;t} (18b)

if t #k7 (we assume m = fi= 1) and
i

Kixy) = exp{ — -k J8lx — (= 1)) (19)
if t = Jkr (see Ref. 19 for further references).

We shall show that the Maslov correction (18b) emerges
naturally in the nondamped limit of the above results:

Proposition 7: Letd = 1 and 2 = @ — iv with »,v posi-
tive. Then, ifwt #k7, k = 0,1,2,..., and €L *(R) has a com-
pact support, we have

tim (¥, )x) = [ K.txolp 0) . 20
On the other hand, it holds
tim (¥, 9)) = exp] — 2k | — 11%) 21

for t = kn/w and Ye Z(R).
Proof: Let wt # km and consider (8) with d = 1 and
2 = w — iv. We denote

h.(y) = exp{(if2 /2 sin £2¢ )y cos £2¢ — 2xp)};
then

sin w?
h.(v) =ex [—[ cos wt — 2x coshvt)
LM 2 sin 217 0’ y -
— (y? cosh vt — 2xy cos a)t)sm W”
vi
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so that
|h. )| <exp{o|yl(|y| + 2|x|) sinh v¢ sin~? ot },

and therefore the dominated convergence theorem can be
applied if @ has a compact support. It implies

lim (V@ )(x) = lim CXp{igv(t)}fo(x,y)¢ ) dy,
v—0 + v—0 + 2 R
(22)
where
g,(t) = arg(f2 /sin 2 )i.e.,

8, (t) = arctan({tanh vt cot w? ) — arctan(v/w) — k7
(23a)

for kmr < wt < (k + ). The term — k7 is chosen so that the
rhs is continuous in the points f = k7/@ and tends to zero
with #—0 + which certainly must be true for g, . It is easy to
see that g, is decreasing; its shape for three values of v/w is
sketched on Fig. 1. For fixed ¢, (23a) gives

lim g, (t)= —kr forkm<owt<(k + l)m; (23b)
v—0 +

this relation together with (18b} and (22) gives (20).
Let now in turn wt = k7. We take €. (R) and express
(V. ¥){x) from Proposition 6. Since

i(— l)kxy]
cosh vt

y*t tanh vt
2(km — ivt)
the dominated convergence theorem can be again applied
which gives

tim (¥,9)0x) = (27)—‘“exp[ - ]

<1,

exp| -

xLexp{i( — 1) (Fely) d,

N|('__:I’

-2n

=11
2

git)

FIG. 1. The function g, .
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where F = F, is the Fourier~Plancherel operator [so
Fye #(R)). Using further (F*y)(x) = ¥ — x) for k odd, we
arrive at (21). B

8. THE CLASSICAL LIMIT

As mentioned above, we limit ourselves to the case
when the initial wavepackets are Gaussian, especially such
obtained by shifting the “ground state.” We takegp = @, . :

@ (x) = (7%~ "exp{ — (2L )" '(x — af?

+ (i/Fijkx ] (24a)
with L complex, Re L*>0,/ "> = |L|"*ReL?% and a, k
real. Expectations and dispersions of position and momen-
tum are the following

(@), =a, (P),=x,

4Q), =2""2, 4r), =212 |L |7 (25)
The propagator referring to arbitrary m and # is obtained
from (8b) by substitutions t—#it /m, £2—mJs2 /#. Applying
now Theorem 2 with this modification and Proposition 4, we
obtain

(V,@ )x) = (7] %)~ 4(cos 2t + iA °L ~? sin 2¢)~ /2

xexp{ —i{24 3!
sin 2t — iA *L ~? cos 2t
cos 2t +iA 2L ~*sin

X [x* — 2xzA *(sin £2¢

— AL " cos 2t)7!

+ A *Z?(sin 2t — iA 2L ~?cos 2¢)!

Xsin 2t} — Ja’L ~7], (26a)
where A 2 = #i/mf2 and z = «fi” ! — iaL ~2. Further, we
choose L as follows

L?=A%=1#/m, (24b)
and denote as above £2 = w — iv; then (26a) can be simplified
into the form

(V@ )x) = (723~ exp{ — ilg2¢

— A 7x — (@ + (i/fiKA e~ )?

+ 34 Pa + (i/FikA ?)

e~ cos 2t — Ja’A 7}, (26b)
where A 2 = #i/mw. The probability density is given by

|(Vip)ix)|* = (wA e
xexp{ — vt — A ~3x — x,{t))* + ¥(t)}, (27

where

x,(t) = [a cos wt + (mw)™ 'k — mav)sin ot le ~,(28)
and
Yit)=1A 72— 72— L T2[(B? — pP)cos 2wt
+ (v/w)a® — P¥)sin 2wt — a® — BZle >
with
B ={mo) '(x — mav),
Thus we have obtained the Gaussian-shaped function with

the following properties:
(i) height of the peak decreases with time, for large 7

y '=m|2 k™"
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Ve,

approximately as e ~ %}

(ii) its width A does not change, it is negligible in the
classical limit when a® + £2>4 %

(iii) the peak travels along x = x,(¢ ) which is the trajec-
tory of the classical damped oscillator with the initial posi-
tion x,(0) = a, however, the corresponding initial momen-
tum is mx,(0) = x — 2mav instead of k. Denoting by x_(-) the
trajectory of CDO with initial conditions (a,x), we have
x_(t) — xo(t) = 2ave "' e ~ ¥ sin wt so that the difference is
negligible in the case of weak damping, v<w.

9. THE POINT SPECTRUM OF H

Proposition 8: Letd = 1,2 = @ — iv, the o, (H ) consists
of eigenvectors

¥, (x) = N . 'H, (2 *x)exp( — 42x%), n=0,1,2,.,
(29a)

where H,, are the Hermite polynomials and
HY, =A,4,, A, =2(n+}) (29b)

In general, the eigenvectors (29a) are not orthonormal:

(wn ’lpm) = Nn_n QN,;"%N,"", Where

Nn,n+2.s+l =09
N,.»
' +251/2 ] 2s)! [r/2](n/2) +s
=(l) n.(n+ ) _|n+2s)|0'nﬂsz Z (_1)k+l.
o) Tt 2, %

R Gy BORSRRE

5 =0,1,2,..., and [-] denotes the entire part.

Proof: The relations (29) and (30) can be checked by
straightforward computation. Let us show that H has no
other eigenvalues. For an arbitrary complex 4,3! the equa-
tion ¢” + (24 — £2 %x*)y = 0 has the following fundamental
solution:

¥a(x) = [a® (} — v.};02x7)
+ Bx® (3 — y,3:42x%) | exp( — 42x7), (31)

where 202y = A and @ is the degenerate hypergeometric

function. We have Re £2x* = wx>0; thus, the asymptotic be-
havior of (31) [except for the cases, when one of the functions
in (31) reduces to (29a) and the other is absent] is given by>2

Yalx) = ClaBA2 ' ~ Texp(l2x°)[1 + O (]x| 7')]

forlarge | x|, where C (a,8,1,12 ) isnonzero unlessa = 8 = 0.
Consequently, (29a) are the only solutions to the above equa-
tion contained in L %(R).

In conclusion, let us make some remarks. It is easy to
seethat P= {y, } *_, iscompletein L }(R)sothatford #A,,
n=01,2,.,(H— AP, =Py, isdense and H has no residu-
al spectrum. The problem of absence of continuous spectrum
will be considered separately. Proposition 8 determines, of
course, also o, (H ) for the multidimensional oscillator in the
case when (2 > = 2(4 — iW) can be diagonalized. Moreover,
some results remain true even if 4, W are not simultaneously
diagonalizable. For instance, one can check easily that the
“ground state” vector

1135 J. Math. Phys., Vol. 24, No. 5, May 1983

Yolx) = 7~ 4/*det(Re £2))"*exp( — ix-2x)

corresponds to the eigenvalue } Tr £2 for any 4, W which sa-
tisfy the assumptions of Theorems 1 and 2; notice that it is
not a minimum-uncertainty state [cf. (25)].
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We describe the analytic solution to the Schradinger eigenvalue problem for the class of the
central potentials ¥ (r) = 2,.,a57°, wherea_,> — 1/4,a,,, s >0, Z is an arbitrary finite set of
the integer or rational exponents, — 2<8, <8, <+ <8,, and the couplings a; satisfy only one
auxiliary (formal, “‘superconfinement”) restriction of the type a 5, , > 0. The formalism is based
on an analysis of the asymptotic behavior of the explicit regular solution () and issues in the
formulation of the “secular” equation 1/L (E) = 0 which determines the binding energies. The
main result is the rigorous construction of L,(E ) as a generalized (“extended”) and convergent
continued fraction. The method cannot be applied to the a5, , <0 cases—this disproves the
closely related Hill-determinant approach as conjectured recently by Singh ez a/. for the simplest
potentials with Z = { — 2,2,4,6} and Z = | — 2, — 1,1,2}.

PACS numbers: 03.65.Ge

1. INTRODUCTION

In the quantum field theory, the radial Schrodinger
equation

- gp— o)+ 1 i v i) = Egin

2

W+1)=g_ > —} (L.1)
with the potential
2g+1

Vil= 3 g™ 84,1 =a">0, (1.2)

i=1

appears in models with the simplest class of interactions.’ It
possesses the elementary solutions in some particular cases.”
The more standard applications of Eq. (1.1) with the radial
coordinate re(0, o ) and centrifugal interpretation of
g_,=1{l+1),/=0,1,..., range from the perturbed harmon-
ic oscillations of various systems® up to the structure of quar-
konium.*

The knowledge of the particular solutions to Eq. (1.1)?is
insufficient in most cases, and the nonnumerical construc-
tion of the complete solution represents a challenge to the
mathematical physicists: The simple-minded perturbation
expansions fail to give the convergent results.’

To overcome the methodical difficulties connected with
the anharmonic equation {1.1}, 2 number of alternative ap-
proaches have been developed recently—Ilet us mention here
just the moment recursions,® p — x symmetrization,” matrix
continued fractions® and the continued-fraction method
suggested for ¢ = 1 by Singh et al.®, generalized to any ¢>1
in Ref. 10, and to an arbitrary fractionally anharmonic oscil-
lator (FAO):

I
V=3 aP = 3yt
SeZ

i=1
O<m,/n, < <m,/n, (1.3)
in Ref. 11.
Our present paper has been inspired by the misleading

Hill-determinant interpretation of the results in Refs. 9, 10,
which was criticized by a few authors.'? In brief, our inten-
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is to clarify the situation and to prove in a rigorous way the
following:

(A) For the potential (1.2), the secular equation of the
Hill-determinant type may be written in the form

1/L(E)=0, (1.4)

where L,(E ) is an extended continued fraction'* (ECF) to be
defined below.

(B) For the potential (1.2), the roots of Eq. (1.4} coincide
with the Schriodinger eigenvalues provided that the cou-
plings satisfy the “superconfinement” restriction g,, >0 or

8q-m >0 &g m =0 i=12,.,m, (1.5)
for some nonnegative integer m,<qg — 1.

(C) The validity of the statements (A) and (B) may sim-
ply be extended to the general FAO potential (1.3).

The material is organized as follows. In Sec. 11, we sum-
marize or reformulate some of the results of Refs. 10 and 11
and describe the analytic form of the general solution to the
differential equation (1.1) with the FAO potential (1.3). In
Sec. II1, we present an analysis of the asymptotic structure of
#(r) and complement it in Sec. IV by a thorough investiga-
tion of the other related formal questions. Finally, it is rela-
tively straightforward to complete our discussion in Sec. V
and to identify the convergent ECF quantity L ,(E ) with the
physical “Green’s” function in all the SFAO (“superconfin-
ing” FAOQ) cases. In this way, Eq. (1.4) may be interpreted as
an analytic sum of the (divergent, Brillowin-Wigner) pertur-
bation expansion of the binding energy, or as a direct,
though implicit, analog of the well-known harmonic-oscil-
lator quantization requirement

E=tiw2n + 1 42).

Il. GENERAL SOLUTION TO THE DIFFERENTIAL
EQUATION

By the direct insertion, we may easily verify that the
explicit analytic solution of the radial Schrédinger equation
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(1.1) with the generalized harmonic potential Eq. (1.2) has
the closed form
wr)=rexpl —fiNlplr), v, =3+(+g_)"%
(2.1)

+ 1 ﬂjrzj

f(r)"—"qgl 2_] 4 ¢)(I')= 2ohn+1r2"y

where the Taylor coefficients have the form
I (v 4 L)det Q(n)
l 4'ntl (n+v+1)

and the (¢ + 2)-diagonal, (n X n)-dimensional matrix Q (n) is
defined by the prescription (E = — g,)

Q). =B =—4lj+v—14) j=12,.,n—1,
Qn) 4 iy =Cj('k+)k =46, . (j—14+v/2)+ Gy,
j=12,..,n—k,

h,, = (2.2)

(2.3)

k
G, =g — z BiBxir—: + B 12k + 1), k=0,1,..9.

i=1
The function f|(r) is closely related to the potential, V' (7)
= [8, /(N +0(P), r>1,ie,

B,1=a=8" 1,
=g (o= 3 BBe) 04
k=gq,9g—1,.., 1L
When we introduce the new (barred) variables''
F=r? Y =r"""Yr, 1<p<29+2, (2.5)

the radial Schrédinger equation (1.1) transforms into itself,
with the barred centrifugal and energy parameters

ga=G+g VP-4 E=—g,_,/P (2.6)
and with the new, broader class of potentials
VA =8_72+V_,0+V,,0
M
Vig ) =p7"2 Y g 1ymxt¥™? 2.7)

m=1
M, =2g+2—p, M_=p—1

equivalent to the FAO forces (1.3) and containing Eq. (1.2) as
a p = 1 special case, of course.

Theorem 1: For any FAO potential written in the form
of Eq. (2.7), the regular solution #(F) to the radial Schro-
dinger equation is given by Eq. (2.5), where () is defined by
Egs. (2.1}-(2.4) and v = v . Similarly the irregular solution
is obtained when v = v_.

Proof: By insertion, we find that #(7) is a solution. The
regularity of the new equation in the origin is guaranteed
sinceg_,> —lifand onlyifg_,> — 1, and an estimate
#(r)~r"~, r<l, is equivalent to ¢(F) ~7 -, F<1, since v ,

=i+, —Wp QED

Let us add the following three remarks.

(i) For the given set Zg,o of exponents 8§, = n,/m;, i is
useful to determine the minimal value of ¢ in practice. This
reconstruction of Eq. (2.7) from Vi, may be done in two
steps. First, wedivide all§ ’sin Z, , by 2, find their minimal
commondenominator M (5, = 2N, /M ),andputp = M X T,
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TABLE I. Sample of the “complexities” of the simplest FAO one-term
potentials ¥ (r) = gr¥ ™.

N 1 2 3 4 5 6
M
-4 3 1 3 0 3 1
-3 2 2 0 2 2 0
-2 1 0 1 0 — —
-1 0 0 — — — —
1 2 0 4 2 6 1
2 4 2 6 0 8 4
3 6 1 2 4 10 0
4 8 4 10 2 12 6

where T should be a minimal positive integer. Second, we
must guarantee that the energy term is not omitted from the
Schrédinger equation and that the leading exponent 2N,/
M = max(8,0) has the particular form 2(2¢ + 2 — p)/ p, i.e.,
(N; + M )T = 2g + 2. Thus, for even N, + M = 2k we
choose T =1 and put g = k — 1 while forodd ¥, + M
=2k + 1 we must take T = 2 and ¢ = 2k. This procedure
defines the minimal parameter ¢ uniquely—a few examples
are shown in Table 1.

(i1) The choice of p = 2¢g + 2 in Eq. (2.5) is a little bit
exceptional since V' (w) = ¥,_,(e) = 0 and our “spectral”
restriction g,, , ; > O eliminates in effect the continuous part
of the spectrum (cf,, e.g., the well-known ¢ = 0 harmonic
oscillator—>Coulomb-potential transformation). At the
same time, wheng,,_,, =0,m =0, 1,2, ..,m; — 1, and
824 m, 70, the “subdominant anharmonicity” m, is to be
added to the classification of V' = V¢, and ¢ by the “com-
plexity” g and the “fractionality” p.

(1ii) The choice of p = 1 with g_, = 0 seems to be also
exceptional—it admits the (r<> — r symmetric) one-dimen-
sional interpretation of Eq. (1.1) and #(r), with re{ — 0, 0)
and negative and positive parity forv=v__ and v = v_, re-
spectively. For g = 0, the series ¢(r) in Eq. (2.1) coincides
with the well-known confluent hypergeometric function,
while for ¢ = 1, it reproduces precisely the sextic-oscillator
functions of Ref. 9.

. ASYMPTOTIC BEHAVIOR OF THE REGULAR
SOLUTIONS

In analogy with the Singh’s papers,” we may achieve in
principle even the termination of the infinite series ¢(7) in Eq.
(2.1) for some potentials.? For this purpose, it is sufficient to
require the validity of the ¢ + 1 independent algebraic con-
ditions (determinantal constraints)

By, =0, i=12.,9+1. (3.1)

They fix the energy plus g couplings—the thorough discus-
sion of this peculiarity may be found in Refs. 2 and shows
that we get at most two polynomial bound states when g > 3.
The simplest harmonic-oscillator and Coulombic ¢ =0
forces appear to be the only exceptions giving the complete
set of the terminating solutions (Laguerre polynomials) ac-
companied by the explicit formula (i.e., 4, , , = 0) for the
energy.

Reverting the preceding argument, we may conclude
that the normalizable ¢> 1 bound-state solutions should be
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represented by an infinite series in general. In accord with
the standard textbooks,'* this series is convergent and its
absolute value grows in the asymptotic region, provided that
the energy £ does not coincide with the physical eigenvalues
E, . At E = E, the value of ¥{r,) changes sign in the limit
r,— oo —this may be used in the numerical determination of
the discrete spectrum.

In the present paper, the structure of #(7) and its asymp-
totic behavior in the vicinity of E, will be clarified by the
decomposition of the regular solution Eq. (2.1} into the g + 1
partial infinite summations

q

v =3 xlr)

Jj=0
XN =r"e "% Ry P, (3.2)
k=0

nlk) = k(g + 1)+
Let us emphasize that the value of fractionality p is irrelevant
in this context, of course—it concerns just the interpretation
of one of the constants ( — g, _,/ p°) as energy.

Proposition I: The necessary and sufficient condition
for the FAO regular wavefunction #(r) = y,(r) + - + x, (")
to be normalizable is either its termination or an asymptotic
cancellation of its ¢ + 1 growing exponential components
XN ~expl £l r>1.

Proof: We introduce an auxiliary sequence L ) defined
by the recurrences

q j=1 )
o= flevs 3 (e Jor ]

J j=1\m=0
(3.3)
Ly, ,=Ly,,=+-=0, k=NN-—1,.1, By=l,
abbreviate the combinations
U, o =Cll  + LW, U, 1<m<g—1,
(3.4)

Ue ,=C¥% ., UM ,=0 m>q k=12..,N—m,

and define formally the product decomposition of the matrix
Eq. (2.3)

Q(N)= —X(N)Y(N)Z(N) (3.5)
with the nonzero elements
X(N)kk =1, Z(N}kk =B,_,,
Y(N)w = 1/LY),  1<k<N,
XINxi = _L(I\{VJ 1 LN )omie = ~L‘I£V+]mU(r:zn)+ki

(3.6)

l<m<min(g, N — k), 1<k<N -1
For the Taylor coefficients {2.2) we then get

hy .,y =h/LYLYLY. (3.7

As a rule, the singularities of the type L ") = o are to be
understood as limits of the regular cases.

In the 7> 1 asymptotic region we have C\/' =4n g, |,
j=0,1,,..4 B, = —4n” and

L':”=n/(ﬂl + 3 a0 L) (3.8)

J=1
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within the 1 + O (1/n) error bounds. As a consequence we
obtain the first few elements of the sequence L (' in the form

L(Jy)—(qﬁ—l)k:N/B(lk)’ L(lilv—}v(q-ﬁ—lik—jzﬁ;k)/ﬁ}kll’
J=12,..,4 (3.9)

where 8% = f3, and

ik +) 198 o
B; zﬂf+a § Byl mBism
m=1

(3.10)
j = 1,2»»»(], ﬂ(kfll) =a, k = 0,1,-... .

q
The products LY 1 XLV 04 1e— s
X XL{ o, k4 = [N+ O(1))/a may therefore be in-
serted into the definition (3.7) and the coefficients 4, , , and
their N dependence may be given the form

by o = (@A ¥ /T(NA+ Dby, ,, A=1/g+1)
(3.11)

In the asymptotic region N 1, the new coefficients
b, ~by_, exhibit at most the (g -+ 1)-periodic oscilla-
tions so that the ¢ + 1 infinite partial summations in Eq. (3.2)
exhibit the same exponential behavior exp[2 f{r)] for
r>1. QED
Let us note that for ¢ = 0 the cancellation is impossible
(¥=y,) while, for g>>1, the termination of some particular
states (withby = 0, N>1,and by} | = 0; cf. Ref. 2) belongs
in fact to the same exceptional phenomena as a nonexistence
of our fundamental decomposition (3.5) and will not be dis-
cussed here in any detail. Hence the only way how to nor-
malize the harmonic oscillator is the textbook termination of
the infinite series @(r) while, for the anharmonic oscillators,
the universal mechanism of satisfying the physical boundary
conditions is represented by the asymptotic cancellation of
x’s. Forg = 1, this cancellation was shown in Refs. 9 and 12
to follow from the convergence of the analytic continued
fractions L, = L' = lim,_ LY. Similar limits (ECF
quantities'’) may be defined for ¢ > 1 as well—their relevant
properties will be described in the next section.

IV. EXTENDED CONTINUED FRACTIONS AND THEIR
CONVERGENCE

Forlargen = O (N )» 1, thefinite approximants L !}’ de-
pend only on the difference N — n and oscillate—this is a
consequence of Egs. (3.8)—(3.10). Provided that the ECF lim-
it L (= exists, these (g 4+ 1)-periodic oscillations must be sup-
pressed,ie,L, =L, ==L, =P, forO(l)<n
<O (N). The P, ’s [stationary points of the g-to-one mapping
Eq. (3.3)] have to satisfy the algebraic equation

P, =n/(B,+ B8P, ++B,.,P}) (4.1)

and may be given explicitly by the asymptotic expansion of
the type

s B4
P, =P(;’=e<i) - Ei'—+o(i4),

a a n

4.2)

A= 1 , €=¢, =exp(2mimd), m=0,1,.4.
(g+1)

M. Znojil 1138



As a consequence, we arrive at an asymptotic estimate

LW =P‘,,‘)(l 4 o(i)) Nsn, (4.3)
n//j

which enables us to accelerate the convergence: We put
L, =P9+R, (4.4)
and redefine the initialization, R §J'} , = 0 in the limit

N—) o0 .
Proposition 2: Provided that 0<my,<g — 1 and

B, ,=0 m=0, 1,..,my,—1, Bq—m(,eq_m”>0,
(4.5)

the finite ECF approximants R ") = L, — P! defined by
the recurrences (3.3) and initialization R /) ; = 0 are con-
vergent and determine the ECF function R (/.

Proof: The new nonlinear ECF recurrences for R |}’ fol-
low directly from an insertion of the definition (4.4) into the
old recurrences (3.3). They have the asymptotic form

PiS, R 1R G140 (1/n)]

,(4.6)
n+P,S, (R 1, R

V) —
RN =

Sn(Rn+17-'-yR,,+q)
=BZ(L"+1 _P")+ '.°+ﬂq+l(Ln+l"'Ln+q _P?-)

k-1 [

S
= 2": ﬁs+1pf‘lk2lR"+k[l+ > 2
S=1 =

I=1¢4=1

4— v Rn+l+tm—m 1
> H—‘p,,——w(:)]’

y=1m=1

with the zero (i.e., O (1/n' ~4)) stationary point.
Having in mind the error bounds, we may specify the
vicinity of “zero” in the form

RNV =0(n"~2"2/n'=2)30(1/n' ~4). (4.7)

In the asymptotic region, this permits the linearization of the
ECEF recurrences (4.6),

R,= —(t,R,,, ++1,R,, ,)+0(l/n'~4)
t =1—(BPk + - +BP,)/n+0(1/n), (4.8)
k=12,..,4q.

Let us consider any initialization
R, =p,=O0(1/N" 47

and rewrite the linearized recurrences (4.8) in the matrix
form

Lo Ry By
1 1 0 Ry_, P2
t, 1 1 0 Ry_ s =10, } (49
Iy L Ry_, 0
0 tq RN—q—-l 0

wherep,,i = 1,2,...,q, are some simple linear O (1/N ! ~4172)
combinations of p,’s. Using the decomposition of the type
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1 0 1 0
, 1 0 | -a 1 o0
L t, 10 Y0 —aq, 1 O
1 0
—a, 1 0
X eor X 0 . i o {4.10)

where a,, ..., a, are complex numbers in general, we may
invert easily the left-hand-side matrix in Eq. (4.9) and get

R, 1 0
R,_, a, 1 0
; X e
R, , a, a, 1 0
1 0o .. '51
g 1 0 - P>
X @ a 1 0 - X s . (4.11)

In the next step, we may prove by induction that the
right-hand-side product M, , =M, ., ... k=12,.,0f
matrices in Eq. (4.11) is zero for n > m and its nonzero ele-
ments may be written in the compact form

ait*

M

m+km =

(@, — ay)la, — as)(a, — a,)

g+ k
az

(@2 — a,)la; — as)(a, — a,)

q+k
a,

(@, —a))a, —a;){a, —a,_,)’
m=12,.., k=0,l.. (4.12)
Hence, the £ dependence of R, _, is given by the powers of
a¥. In the final step of the proof, it is sufficient to show that
lla:|| <1,i=1,2,....q.

By straightforward algebra, wegets, = —a, —a, — -

— Q4 -y By =(— 1)%a,a,--a, in Eq. (4.10) so that a,’s are
equal to the roots of the algebraic equation x? 4 #,x7 '
+ +- 4+ ¢, = 0 which may be written in the form

l_xq+1 _ BIPn 1 —x* BqPZ 1—x
1—x n 1—x n

= 0(i), x#1.

n

1—x

(4.13)

Now, assuming that n is sufficiently large and Eq. (4.5) is
satisfied, we get

1_x41+l=

pi=me
BB (1 1 4 01/,
n

(4.14)

Since the right-hand-side of Eq. (4.14) may be made arbitrar-
ily small by the choice of n» 1, we may write
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2midl

a,=¢€(l+7), ="

1<i<q, |I7|l<1. (4.15)
Inserting this expression into Eq. (4.14), we obtain
n=B, nPi et —1)4/n+ 07 (4.16)

In accord with our assumption (4.5), the real part of 7 is
always negative so that Re(1 + %) < 1 and jjg;|| < 1 forn < .
This completes the proof since, in accord with Eq. (4.15), the
denominators in Eq. (4.12) are all nonzero, and R,
= O (max||af||) = O (exp( — constk/n*)) may be made arbi-

trarily small within the & <k <N asymptotic region. QED

(i) On the particular ¢ = 1 example, the content of Pro-
position 2 may be illustrated very simply—the ECF degener-
ates to an ordinary continued fraction,'” the choice between
the two roots of the quadratic Eq. (4.1) is given by the rule
€ = sgn B, and both the initializations L ) | = 0 and
RY) , = Oareequivalent so that the transition L, —R,, [Eq.
(4.4)] is merely an acceleration of convergence.

(ii) For ¢ > 1, the values of P ¢ may be complex, causing
a divergence of L {*’, which need not necessarily be accom-
panied by the divergence of R (' a priori. The exact proofs of
equivalence would be extremely complicated even for the
real€’s (e = + 1}—anexample of ag = 2—analog of Propo-
sition 2 for L {*”s may be found in Ref. 10. Fortunately, the
present weaker convergence of R '®' is fully sufficient in the
context of the next section.

V.ENERGIES OF THE BOUND STATES

The determinantal equation (2.2) for A, , , is less suit-
able in the asymptotic region—let us switch back to the
original recurrences. They may be given the form of the infi-
nite-dimensional matrix equation

h,
Q(w)fh, |=0. (5.1)

Assuming that the product decomposition (3.5) of @ (V) ex-
ists also in the limit N— o, we obtain the fully equivalent
form of Eq. (5.1):

h, W,
Y(w0)Z(cof by |=|:], (5.2)

where the right-hand-side vector is defined in terms of the
convergent ECF’s by the formulas X {0 )0 =0, i.e.,

k
w, =h, H L=, k=12,., (5.3)
j=1

and it can, of course, be nonzero in the N = « case. Hence
we do not need to require a priori the zero Hill determinant
det[Q ()] = 0, contrary to the intuitive expectations of Ref.
9, where Eq. (5.1) was misinterpreted as an eigenvalue prob-
lem.

The validity of the g, > 0 part of the Singh’s results is
almost surprising—the physical energies coincide indeed
with the zeros of the Hill determinant.'? Let us show that
this is a peculiarity of all the SFAO potentials [ = FAO’s
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restricted by the “superconfinement” or “subdominant posi-
tivity” requirement (1.5)].

Theorem 2: When we put € = 1 in the ECF definition
(4.3), the roots E,, of the “secular” equation

1/R\=(E})=0 {5.4)
determine the physical SFAO bound-state energies.

Proof: First, we have to prove the convergence of the
ECF quantities R |*). This is an easy task because Eq. (1.5)
implies Eq. (4.5}, and we may apply Proposition 2. Next, we
may factor out all the dominant n-dependence in the recur-
rences Eq. (5.1). In detail, estimates of Eq. (4.3} and

L U9 K =4naPt*'+4nB,Pi(l —k4a)+ -,

k=0,1,.,9—1 (55
make it possible for us to rewrite Eq. (5.2), i.e., the Taylor
recurrences
h By _ /L

min{g,k — 1}

o, + > Ubh_, k=12, (5.6)

i=1
in the k> 1 asymptotic form. Indeed, using Eq. (3.11) and the
Stirling formula in the form

[(k/A)]% =k'4 ~*~4722ak 4~ 2[1 4+ O(1/k)],

5.7
we obtain the relation
2 const [ 1
by, = onst 1+0(—)], 5.8
&, e = () N4 >

reflecting the contribution of w s, the size of which is com-
parable with the b,,’s.

Finally, the g + 1 &’s may be considered almost con-
stant in the N> 1 asymptotic region, by , ; ~b,. Hence, in
accord with Eq. (5.8) and for the particular value € = 1, the
sign of the superposition of y,’s for r» 1 is determined by the
sign of L,(E ). This sign changes exactly at the root E,, of Eq.
{5.4)sincethepolesof L ,(E )and R (E ) coincide. With respect
to the standard oscillation theorems,'* a new node appears in
¥ whenever E crosses E,—the value E, coincides precisely
with the SFAO bound-state energy. QED

(i) The proof given above is the main result of our paper.
The Theorem 2 may be interpreted as a rigorous foundation
of the Hill-determinant interpretation® of the eigenvalue
problem with the following strong warning: The physical
energies E, in Ref. 9 coincide with the Hill-determinant ze-
ros by mere chance—for the non-SFAQ potentials with
824 _ m, <0, the Singh-type interpretation of det[E — @ (o0)]
is completely misleading and gives the unphysical energies. '

(ii) Indeed, for €1, there is no relation between the
root of Egs. (5.4) and (1.4) and the asymptotic behavior of 1.
The superposition of b,’s or y;’s is in no way related to Eq.
(5.8): Fore = — 1and ¢ = 1, the asymptotic cancellation of
Xo and Y, is even minimal'? at E = E, —the asymptotically
decreasing exponential component of ¥(r) seems to be sup-
pressed. Thus, the choice of e = + 1in Theorem 2 is unique,
and we cannot remove the “superconfinement” restriction
within the present ECF framework.

(ii) The main merit of our “secular’” Eqgs. (5.4) or (1.4} is
their analytic and compact structure. Nevertheless, in con-
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trast to the original expectations,” the purely numerical ex-
ploitation of Eq. (5.4) is also possible in principle.

From this numerical point of view, the transition L {}¥!
—R ™ is extremely useful. When we consider the illustra-
tive example 8, = 1 with L {) | =0and

q'k!

LW - ,
N —{g+ bk (q+k)!
k
L(I('V)—(an-j:l"_q_ﬂ—_'}’ (5.9)
j=4,2,..,49, k=0,1,..

[cf. Eq. (3.9)], we see that the use of R 'Y ”s eliminates the
large (g 4 1)-periodic oscillations L — L'Y) | = O(n)
which survive in the asymptotic region for at least as many as
O (N *) iterations of the old recurrences, Eq. (3.3).

(iv} Of course, the smaller oscillations are present in
R Vs as well. Fortunately, they decrease for the higher cut-
offs N. Moreover, they may systematically be suppressed
either by the next (k th) substraction of the form

R,[0]=LY, P,[1]=P),

R,[1]1=R}\,
or by an averaging over the ¢ + 1 neighboring cutoffs
N=N,+ii=1,2,..q+ 1. Theefficiency of the latter
type of “smoothing” was found empirically in a somewhat
related context in Ref. 6. When combined with the subtrac-
tions (5.10), it was tested in Ref. 10 for ¢ = 2 and proved to be
comparable even with the specialized methods.

(5.10)

V1. CONCLUDING REMARKS

We have proved that Eq. (5.4) defines the energies of the
anharmonic oscillators which belong to the SFAO class, i.e.,
which are restricted by Eq. {1.5). We have also proved that
the ECF representation of the underlying “Green’s” func-
tion R {*!(E ) is convergent. In the conclusion we would like
to add the following remarks:

(1) Rather surprisingly, the acceleration of convergence
(quasiequivalence L,—R,—R, [2]—--) makes the analytic
ECF formalism well suited even for the numerical computa-
tions.

(ii) The immanent ‘“‘superconfinement” restriction re-
sembles the similar property of the JWKB method'® and
cannot be removed without the deep modifications of the
ECF method. The possibility to revert the ECF recurrences
is under current investigation at present.
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(iti) The partial (SFAO) coincidence of the present secu-
lar equation with its Hill-determinant precursors®'® may be
characterized as a Iucky chance and attributed to the very
special type of the Schrédinger boundary conditions im-
posed on Y(r} at r— 0.

(iv) Contrary to the a priori expectations based on the
analogy with the ¢ = 0 harmonic oscillator, the essential
technicality leading to the successful compietion of the stan-
dard power-series method is not only the factorization of the
wavefunction ¢ = exp( — polynomial) X power series, but
also the ECF shortening of the Taylor recurrences to their
final {g + 1)-term form. The SFAO restriction (or the ECF
convergence from the more formal point of view) is in fact
Just the condition of stability of the underlying decomposi-
tion @{oo) =X ()Y (0)Z ().

{v) The exceptional {terminating) solutions? which cor-
respond to the singular cases in our formulas (L, — o« etc.)
are to be interpreted as limits of the neighboring fully regular
cases. This is compatible with the spirit of the classical the-
ory of the analytic continued fractions.'®

(vi) The classification of the FAO and SFAO forces by
means of the “complexity” g, “fractionality” p, and “‘subdo-
minant anharmonicity” m is an interesting byproduct of
our considerations. It leads to an unusual partial ordering
g =0, g = 1, .- of some standard anharmonic models.
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We show rigorously that the H™ ion possesses exactly one (three times degenerate) bound state in

the unnatural parity sector.

PACS numbers: 03.65.Ge, 03.65.Db

1. INTRODUCTION

Although the existence of the discrete ground state
(15)? 'S of the nonrelativistic H™ ion at an energy of
— 0.52775 a.u. (atomic units) was proved fifty years ago
(Bethe!, Hylleraas?} and also relativistic corrections {except
the Lamb shift) have been calculated with high accuracy (Pe-
keris®), the rigorous proof that the discrete bound state is the
only one has been performed only a few years ago (Hill*),
including also corrections due to the finite proton mass.
The point spectrum of the H™ ion is of considerable
interest both from the physical and from the mathematical
viewpoint. The bound state of this ion accounts for the long-
wavelength continuous absorption in the solar atmosphere.
The H ™ ion is the only negative ion for which rigorous lower
bounds on energy eigenvalues and upper bounds on the
number of eigenvalues can be derived with present techni-
ques, except for results concerning the finiteness of the dis-
crete spectrum (Antonets, Zhislin, and Shereshevskii®), the
absence of the discrete spectrum in the special case of no
symmetry and large ionization (Ruskai®) and some results
for a certain class of potentials (Grosse’ and Klaus and Si-
mon®).
In the fixed (infinite mass) proton approximation, the
Hamilton operator of the H™ ion reads
2 2
H=H,+v, H=21_L £~ 1
2 r, 2 r,
yo L
’12
defined on the usual dense domain of self-adjointness in
& = L *(R®). The point spectrum of the unperturbed Hamil-
ton operator H,, consists of the eigenvalues
— (1/n% + 1/n3)/2 withintegers n, and n, (n, > 1), which are
4n?ni or2n}(n? — 1)times degenerate for n, #n,orn, = n,,
respectively. Since the total wave function must be antisym-
metric with respect to the exchange of spin and spatial co-
ordinates, we may restrict the Hamilton operator A to the
symmetric sector %, and the antisymmetric sector #°, of
7, respectively.
The spectrum of the unperturbed Hamilton operator
H, is highly degenerate because of its large commutant.
Each combination of electron angular momenta L, and L, to

T2 =X — X, (L.1)

“Work supported in part by the “Fonds zur Férderung der wissenschaftli-
chen Forschung in Osterreich”, Project. Nr. 3569.
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L =L, + L, with |/, — ,|<I</, + [, determines the parity
P=P,P, P, =(— 1), i = 1,2, which need not be equal to
(— 1). States of the H™ ion with parity P = ( — 1) or

( — 1)'* ! will be called states of natural or unnatural parity.
Each of the two sectors 7, and 7, is then decomposed into
the two subspaces of natural and unnatural parity, so that
the Hamiltonian H is reduced by each of these four sub-
spaces of #°, because P commutes with H.

Whereas natural parity states with energy above — |
can decay into one free electron and the hydrogen ground
state (Auger effect), this decay is impossible for states of un-
natural parity below — ] because of the natural parity of the
final state. Other decays, e.g., radiative transitions of un-
natural parity states may occur, although implying larger
life times than Auger transitions.

Let us denote the unnatural parity subspaces of the
symmetric and antisymmetric sector by 7 and 7, re-
spectively. The ground state of H,, restricted to #°, with
binding energy — 1 is three times degenerate, because the
lowest angular momentum eigenvalues yielding unnatural
parity are /, = [, = [ = 1, i.e,, both electrons are in (2p)
states; the lowest states within #° have energy — 13. The
lowest threshold of H restricted to the unnatural parity sec-
tor lies at the value — } and corresponds to one free electron
and a (2p) hydrogen atom.

In the following we shall transpose some method of esti-
mating the number of discrete energy eigenvalues from the
natural parity subspace to unnatural parity. Variational
computations (Drake®) have shown the existence of at least
one discrete energy eigenstate with unnatural parity, lying
below — 0.125350 a.u. with an estimated root-mean square
radius of 20.3 a.u.

At first it becomes obvious that Hill’s method can be
applied only if the ground state onto which one would like to
project in order to bind from below the Hamilton operator is
nondegenerate, which is not true in the unnatural parity sub-
spaces 7 and . But next we observe that to each choice
of total angular momentum, i.e., / and m fixed, there exists
exactly one possible choice for /, if /, = 1, namely /, =/, in
order to obtain an unnatural parity state, and analogously
for /, exchanged with /,; or, in other words, coupling
Y, . (12,) with Y, _, (£2,) with />1 yields states with total
angular momentum / — 1, /, and / + 1, but only the states
with total angular momentum/ have unnatural parity; there-
fore, if one of the two electrons has angular momentum /,

= 1, there exists exactly one linear combination of products
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of spherical harmonics, which we shall denote by
% . (£2,,02,), with unnatural parity and total angular mo-
mentum eigenvalues /, m,

Iim2u)= 3

m =0, %1

(2) ('{)1»92) = @ (-02» 1)»

im' Yim (2)Y, o, (125),(1.2)

with appropriate Clebsch-Gordan coefficients.

The lowest possible choice of total angular momentum
in the unnatural parity subspace, i.e.,/ = 1, which leads toan
antisymmetric combination of spherical harmonics with re-
spect to the exchange £2,<>{2,, namely

Y (2,,02,)

- —}; [Y11 (2,07, 0(625) = Y,0(2)Y,, (2,)]
Y(2,.02,)

- iz (Y02 (@)Y, () — ¥, (2,)Y,,(2,)](1.3)
@(11,)— 1(‘01’02)

1
= —[Y,0l@)Y
Ji[ ol

is much more difficult to handle both in the symmetric and
antisymmetric sector of 77°. Therefore we shall start with the
simpler cases with total angular momentum /> 2.

—1(2y) = Y, 1 (2))Y,,(42,)],

2. TOTAL ANGULAR MOMENTUM />2

We start with the decomposition
# =L*R®) =L* R ;rdr)®L*R ;rdr)
® L Yd2,)e L3dN,) (2.1)
and restrict our investigations to one choice of total angular

momentum, i.e., we keep />>2 and m fixed. Using the projec-
tors

Pl =1F0F0 i=12,
on LZ*dnN,)eL?*dQ,), (2.2)

the main idea consists in trying to minorize the potential V'
by using the well-known projection method (Hill,* and Thir-
ring'’) and projecting onto the subspace R |/}, -5 where

RY) =Py 1)eP)
and

RY, =(1eP,)®P,
with

P,=|®){(®| on LR, ,~dr),

r

= —e " (2.3)
V24
The operators R |/}, project i = 1,2 onto a p state, leaving the
radial part of the wave function of the other particle free in
such a way as to obtain an unnatural parity two-particle state
with total angular momentum /,m.
With the aid of the new projectors
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Ol =V VR (R L,V T RE) RV,
i=12, (2.4)

(note ¥ is positive so ¥ !/2 exists) one can use the obvious
operator inequalities
VovizQR vz i=1,1, (2.5)
to obtain lower bounds (Bazley,'! Thirring, '® and Bazley and
Fox'?),
V>RY. RYV-IRO)TRY, i=12, (2.6)

which imply minorization of the ordered discrete energy ei-
genvalues via the min-max principle. Then one obtains the
operator estimates

V>(Py @ 1)V, (r) @ P},
and (2.7)
F>(1 ®P¢)V1m("1)®P‘2)

with the effective potentials

Vi) =L dr 2 ®7r)

Xfdﬂldﬂzlg‘z,lr’n(nvﬂznzlxl — X[ (2.8)

Using the expansion of |x, — X,| into products of spherical
harmonics and definition (1.2) one easily evaluates the poten-
tials ¥, (r), but for total angular momentum />3 one can

exclude bound states with the aid of rather crude estimates.

A.Case />3

Since in this case the centrifugal force causes an addi-
tional repulsive potential, we may try to replace first the
potential ¥ by the lower bound

1 1
>

r+r

=V,. (2.9)
IX; — X,

Then the same procedure as above can be applied to the
potential ¥, , now yielding
Va(Pe @ WU (r)@PY) + (18P, )U(r)e PP, (2.10)

with the potential U given by

U= [CarAeNn 4 =nts, 1)
(0]
where we have used the fact that P}!),-P?), = 0 for />2 and
especially the angular independence of the lower bound (2.9).
Insertion of the lower bound (2.10) into the Hamilton
operator then leads to the estimate

H |, .2h(r)R, + Rk (r)
— MR +RE) YR, +RE)
(2.12)
2
h(ri)zp_:;—i“"U(ri)y i=1y2’

i

where 7™ denotes the unnatural parity sector of #°. In or-
der to exclude the existence of eigenstates of H with unnat-
ural parity and total angular momentum /3> 3 below the ener-
gy — }, it therefore suffices to prove that the one-particle
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Schrodinger operator acting in the Hilbert space L (R, ,dr)

1 d? I7+1) 1 1
N - 0
2 dr 27 r + r+S5 >
for I>3 (2.13)

should be positive, an estimate of a rather trivial kind.

B.Case/=2

Here we do not use (2.9) but project the full interaction
onto the subspaces spanned by

2,m

1
4 + (-01:-02) = "7_; (@(211" (01,02))@(2) (‘{21"02)’

P, =% W%, | (2.14)

Here we suppress the index m since all is clearly independent
of it. Using the fact that

P, V7'P. =0

we obtain a lower bound as follows:
VoV, P, +V_P_

with

(2.15)

V< lrur) = fdnldnzr@ L (2,21 — %, (2.1.6)

Explicit calculation of V', is trivial by noting the expansion
of ¥ ~! into products of spherical harmonics:

© 1
X, — X,| = zkl("prz) z Y, (2))Y 2, (02,)4m,  (2.17)
=0 m= —1
where the kernels &, are explicitly given by
1 e 17
2l + Vk,(r,r) = = _ <
Clr Dbror) =553 Al -1/
1=0,1,2,..., {2.18)
r_ =min(r,r,), r. =maxr,r,).
Using, for instance, the expression for %{):
1
@‘212) (-Qpnz) = - [Yl,l (ﬂl)Yz, —1 (!22)
2
=Y, 1 (02))Y,,(12,)] (2.19)
in Egs. (2.14) and (2.16) gives
V. Yryra) = (ko — K, F 3k, + 3s)(rro)- (2.20)
Next we use V_>V¥_ in Eq. (2.16) and get
VoV, P, +P_). (2.21)

Adding H,toboth sides of (2.21) and taking expectation
values in states of the form

¥, (XpXy) = ”le" [ (202 (rrs)

+ @(22)m (01’02)1’(’2,’1)]:
X(rlfrz) = ¢(r,)f(r2), SfeL 2(]R+;r§dr2),

shows that for both the symmetric and antisymmeric sub-
space one obtains the same lower bound

(2.22)

WV >>fdrlr% f CdrnR o) PV o). (223)
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Projecting once more particle one or two onto the radial
part of the p wave function reduces the problem of excluding
bound states below energy — 1 to the question of positivity
of the one-particle operator on L (R ,dr)

(2.24)
where the repulsive potential U (r) is defined through
U= [ ARy ) 2.25)

0

A somewhat tedious but straightforward calculation leads to
the explicit expression for U (r)

U:l(r)=r+1+—r -———rz ——’3 + 4
12 96 144
—e | — —_— . 2.2
A FrEe) e

To prove (2.24) it is enough to show positivity for a
potential which is a lower bound to U (r). We take

U, (N>0(r—31r+1+12/r)7", (2.27)

then the total potential in (2.24) turns out to be positive.

3. TOTAL ANGULAR MOMENTUM /=1

In order to study this case we use the fact that there is
one, and only one, angular momentum configuration for
fixed total magnetic quantum number m for which at least
one of the two electrons is in a p state, namely with
I, =1, = 1= 1[see(1.3)], and start replacing the potential ¥
by the lower bound

VoV, (rur)P ., (3.1

where the operator P, ,,: = P projects onto %,
: =% andclearly P!, = PP since #{, = — ¥¢,.
The lower bound potential ¥ is given by

Vilrr) = fdﬂlfdﬂﬂ@l,m (2,1,02,) %%, — Xy

= (ko — ky)(ris72)s (3-2)

where the kernels k, have been defined in (2.18). From now
on we consider the Hamiltonian

H,: =Hy+ VP, <H (3.3)

restricted to the subspace P, ,, #° with / = 1 and fixed

m = 0, + 1. Without always mentioning P, ,, we shall work
in L3R, ,Adr,) XL *R_.,r3dr,). Projecting next one of the
two electrons onto the state @, we obtain

VsV V@IV 2 (3.4)
where the projection operators Q, and Q, are given by

Qi=Vi " Pe@ W)V ['? Po=|P)P]|

(3.5)
Q, =V *W(r)1ePe)V '
and the new potential W is given by the integral
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W=y = f Tdr ARV N rur)
0

12 48
=r2 s e eoar—
r; "g
(e 2 B Y
r r "g

Q,V Q, in Eq. (3.4) projects onto the subspace spanned by
Q,5¢ and Q,77. In order to simplify we use the expansion

QnVQ2=—21—(Q1+Qz)+%

X io(QHQzQ.)"QzQ{ +0:(0:2,)°2,Q;) (37

and, since all terms on the right hand side are positive, we
may take into account only the first term which gives

V230 + @ — A0, — 0,0
+ 4Q:0:0: + 0,0:0>)- (3.8)
To handle the contributions coming from
R=VHQ0,+ Q.0 * (3.9)

we shall use Hill’s procedure (Hill*) of rewriting the inverse
Coulomb potential into two rank one operators and an inte-
gral over separable terms, i.e.,

2]x; — X[ =(1+r)(1+7) — (1= r)(l —ry)

el
|x; — x| r
()
X, —x'| 7

a representation which is easily checked by noting that the
linear potential is the Green’s function of ( — 4 )>. Projecting
(3.10) onto a particular angular momentum state yields for
k, and k, entering into Eq. (3.2)

(3.10)

kolri,rs) = —(1 +r)(l + 1) — -—(1 — )l —ry)

el )(JL -1)

ky(ry,ry) = — "—f dr'r’? 1< —,

(3.11)

r,, = max(r,,r), 7, = min(r;,”), i = 1,2. In order to
use these separable kernels we write down the matrix ele-
ment

WiRgy = [ "ar, f “drR o)

f drir; f drrR (ror s WAL ),
(3.12)
YeL (R, i dr) @ L ¥R, ,r3dr),

where the operator R defined in (3.9), which reads explicitly
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R =Py @ YW (ry)k (r,r)W(r))(1 @ Py)
+ (1@ Py )W (r )k (r,rs) W(r,)(Pe ® 1),

k (rira) = (ko — ko)(ri,ra), (3.13)
has the kernel representation
R (rorpri )= @ ()@ (r)(W (ro)k (ror )W ()
+ Wir)k(ror)W ()@ (r)@(r;).  (3.14)

From Egs. (3.11) and (3.13) one finds easily that the contribu-
tion to ( — R ) and thus also to the lower bound (3.4) coming
from k,(r,,r,) consists of an infinite-rank part which is posi-
tive (negative) for antisymmetric (symmetric) radial wave
functions, whereas the contribution from k(r,,,) consists of
a positive (negative) rank-one part and a negative (positive)
infinite-rank part for the antisymmetric (symmetric) case.

Our next efforts are devoted to the reduction of the re-
sulting lower bound to suitable one-particle problems; we
must treat separately the spin-singlet and -triplet case. Since
for / = 1 the wave function is always antisymmetric in {2,
and £2,, the singlet wave functions are antisymmetric with
respect to 7, and r,, whereas the radial parts of the triplet
states are symmetric functions.

A. Singlet sector

Here we may omit the contributions to ( — R ) coming
from k,(r,,7,) and that from the rank one part of ky(r,,7,). One
may try to eliminate the rank-one part with the help of the
common eigenfunction of Q, and @, to eigenvalue one,
which is given by

Qx=0Qx =%, f dr]rff dr,2yiror) = 1, (3.15)
0 0
-12 > 32
xirur) =V rn)@ (), = ——.

But unfortunately k, — &, has an infinite-rank positive part.
Therefore we use (3.11) and obtain

Vi>(Pe @ WWir) + W(r )18 Pg)— R,,
(3.16)
Ry = (Py & )W (ry) ko(ry,ra) W (r))(18 Py) + (12)

olrisr2) = J1 + 7)1 + 7o)

The Coulomb-like operator H, can be estimated conve-
niently by means of the projector

(Po®)V(1®Py)=Po @1 +1®Py — P, e P,,

k_o("p"z) =k

(3.17)
where the last term is zero in the singlet sector; so one obtains
Hy+ 1>(P, @ 1)p2/2 — 1/r))® Py, + (12)  (3.18)
and inserting the estimate (3.16) the inequality
+>[(Py® 1)(p;2,_/2|,2:l —1/r,+ Wiry)
~ (Pe ® YW (1)) ko(ri,r)W (r,)(1 ® Py)
+ (1-2)] Py, (3.19)

is obtained. The kinetic energy operator is here restricted to
angular momentum one.
Sandwiching (3.19) between singlet states of the form
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27D (r) f(r,) — flr)® (), fEL YR, ,r*dr) for the radial
parts, one finds out that it suffices to count the negative ei-
genvalues of the one-particle operator

hy =(1 = Po)[p*/2],o1 = Vr+ W()—S](1 - Py)

on LR, dr), (3.20)
where the integral operator S has a kernel
slrur) = — @ (r)W(r) ko(r )W ()P (r).  (3.21)

In Appendix A we shall prove that this operator A, on the
half-line is nonnegative.

B. Triplet sector

The Coulomb-like part can again be estimated using
{3.17); one obtains

Hy+ 1> ((Pp 0 1)p3/2 | Le1 — 1/r) + (12)
+ P, ®P,)P,, . (3.22)
With respect to the potential ¥V, , this time we omit the infi-
nite-rank part of ky(r,,7,) and thus obtain the estimate

Vi2(Py @ )Wir) + (P & )W (ry)

X ka(rr )W (r)(18 Py) + (1<2),
(3.23)

ka(ryora) = kolry,ra) — 31 + r)(1 + 1),
where the last term stems from the rank-one part of k,(7,,7,)
and we omitted the last two terms of Eq. (3.8).

Again sandwiching the resulting estimate of H, now
between triplet states, i.e., symmetric radial wave functions,
one ends up with counting the negative eigenvalues of the
one-particle operator

? 1 1

=2 — — yWr-T+ —P
I R T
on L3R ,Adr), (3.24)
where T denotes the integral operator with kernel
tirpr)= — @ (r)W(r) kylr, )W (r)®(r).  (3.25)

In (3.24) we have disregarded the factors {1 + P,) on both
sides. In Appendix B we shall prove that this operator 4, is
non-negative, except for one negative eigenfunction.

Together with the absence of negative eigenvalues of
H + }in the unnatural parity sector with total angular mo-
mentum />2, we thus have obtained the following.

Theorem: In the subspace of unnatural parity there ex-
ists exactly one (three times degenerate) bound state of the
Hamiltonian (1.1) below the threshold — }, which belongs to
the triplet sector and carries total angular momentum / = 1
andm =0, + 1.

APPENDIX A

Here we are going to study the pure point spectrum of
the integro-differential operator 4, defined in Eq. (3.20) us-
ing standard Birman-Schwinger techniques, i.e., the dis-
crete eigenvalues — € of the integro-differential equation

(1= Py)[p*/2],_y —A(1/r = W(r)+ S)](1 — Py )¥lr)
= —%é(l _P¢)¢(r)’ €>0, ¢€L2(R+,r2dr)’ (A1)
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with the potential W (r) defined in (3.6) and the integral oper-
ator S defined by its kernel (3.21); instead of counting the
eigenvalues below energy zero for 4 = 1 we may also try to
determine the number of characteristic values of the cou-
pling constant A in the interval 0<A<1 and then let €\,0.

In order to write explicitly the resolvent G (€) of the
restriction of the kinetic energy to the subspace orthogonal
to P

(1= Po)p®| =1 + €)1 — Po)Gole)(l — Py)

=1—P,, €30 (A2)
in terms of the resolvent G (¢) defined by
P*|,1 +€)Gle)=1 on L¥R,dr) (A3)

we use the well-known operator identity
(1 — Py)Golell — Py)
= G(e) — G(€)Ps(Po G (€)Py) ™ 'PyG (€). (A4)

With the aid of the square root of this positive resolvent we
can now transform our eigenvalue problem (A1) to the fol-
lowing integral equation with symmetric kernel:

1‘— ¥ =lki&+kfely, ¥ =R e,
R %4,(6) = (1 —Pg)Gyple)l — Py),

kile) = 2R¢(e>(} _ W(r))R¢(e),

ky(€) = 2R 5(€)SR »(€), 0<A<1, €>0. (A5)

Then the number of bound states N, of Eq. (A1) below the
energy zero is limited by the trace

N, < lim tr[k,(€) + k(€)1 (A6)
N0
Next we use the property of both integral operators k,(€) and

k,(€) of being positive (here is the reason why we have thrown
away repulsive contributions in part 3); we conclude that

N, < lim[(trk } (€)' + trk,(e)]* (A7)
€0
The terms on the right-hand side of (A7) can be written more
explicitly as
A, =lim trk %(¢)
N0

=4[ "ari [ “ara[ L — wir)]
o 0 4
1
x| L - wira]gsirur
r
A, = lim trk,(€)
N0
= 2J; a’rﬁL drzrgs(’hrz)g¢("1:r2) (A8)

Bolrur) = glrurs) — — Yiruir,).

€1
The kernel g(r,,7,) is obtained as the €0 limit of the
Green’s function for / = 1

r

37

>

glrurs) = lime' %, (€ A e r, ) =

r. =min(r,r,), r, =max(r,r,), (A9)
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where j, and A | " denote the spherical Bessel functions. (r)
and ¢, enter from Eq.(A4) and are explicitly given as

o) = Lwdrzrég(rl,m«b (72

:cz{_l_ _e—’-/z(i‘_ + i + ..1_ + i)]

r 64 8 2r, n
= (D,GO)P) =2, c,=64/2/3. (A10)
Numerical integration leads to
A, =0.595 A4,=0.161-N,<0.869, (A11)

and to the conclusion written in the text.

APPENDIX B

Here we shall count the number of eigenvalues V, of the
operator (3.24). Since a straightforward procedure leads to
N, <2 and since one has the feeling that the positive one-
dimensional contribution to (3.24) should compensate the
negative one-dimensional part of T we proceed as follows:
Projecting A, onto the Hilbert space orthogonal to P, one
obtains

hi= (1= Pylh,(1 — Py)
= (1= P p/2],_ s — } + Wi —T|(1~P,)

on LR, Adr (B1)

where W and T are asin Eq. (3.24). Next we use the min-max
principle to conclude that the number of bound states of 4, is
greater by at most one than the number of bound states of 2 ;.
But counting the bound states of 4 | is a problem analogous
to that treated in Appendix A. Therefore we get

N, <1+ lim tr(k,(€) + k;(€)]?, (B2)
€0

where k(€) has been defined in (AS5) and &;(€) is similar to
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k,(€) and given by
ki€) =2R4(€)TRo(€), €>0. (B3)

As before we use trace inequalities to obtain

N, <1+ lim[(trk }(€))"/? + trks(e)]?, (B4)
€0
trk,(€) entering (B4) reads more explicitly for €, 0:

A, = lim trk;(e)
eNo

) f drlr%fo dr2go(rurt (rurs), (BS)
(8]

where g, has been given in (A8) and ¢ in (3.25). Numerical
integration leads to

A, =0.0718>N,<1.711, (B6)

and lim, ., trk }(€) has been given in (A11).
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Inverse scattering for the reflectivity function

Samuel H. Gray

Amoco Production Company, P. O. Box 591, Tulsa, Oklahoma 74102

(Received 24 September 1982; accepted for publication 30 December 1982)

An inverse method for elastic, electromagnetic, or acoustic waves in a stratified half-space is
presented. Rather than transforming the wave equation to one for which quantum inverse
scattering methods can be applied in solving for a potential ¢(7), we transform to one where it is
suitable to solve for a “reflectivity function,” or local reflection coefficient, (7). We show that w(7)
can be discontinuous, thus improving a result of Balanis, and that discontinuities of ¥(r) match
those of the impulse response R (¢ ). We also show the relationship between the scattering kernel of
this method and the scattering kernel of the quantum inverse scattering theory.

PACS numbers: 03.65.Ge, 03.65.Nk

I. INTRODUCTION

The Gel’fand-Levitan (Marchenko) integral equa-
tion, ' first applied in solving the inverse problem of quan-
tum scattering theory, has also been used to solve analogous
problems in elastic and electromagnetic wave propagation
theories.>* The approach usually taken in solving these lat-
ter inverse problems is to transform the wave equation into
either the equation for an elastically braced string (time-de-
pendent)

Vir = Ve —qlr)V =0, (1)
or the time-independent Schrédinger equation
v,, + [&? — g(r)]v=0. 2)

Obtaining Eq. (1) or Eq. (2) from the wave equation requires
transforming both the dependent and the independent varia-
bles. If ¢(7)=0 for 7<0, then ¢ can be determined from the

Gel’fand-Levitan (Marchenko) equation as follows:

dﬂ=2§éKMﬂ, ()

where K (7,t ) satisfies

K(rt)+ R(v+ t)+J R(t+ 5K (rs)ds=0 for |t|<T,
—t
4)

with R (¢ ) the impulse response of the medium measured at
7 = 0. The potential g(7) is related to the profile in ques-
tion—impedance profile on dielectric profile—by a differen-
tial equation obtained in the transformations leading to Eq.
(1) or (2).

Recently, however, Balanis® has devised an inverse
scattering theory, which uses an equation similar to Eq. (4),
for the equation

U, -U,—nnu, =0 (5)

[where y(7)=0 for r<0]. Equation (5), like Egs. {1} and (2),
comes from transforming the wave equation. Specifically,
the elastic wave equation

(pczUx)x —pUn =0 (6)
is transformed into Eq. (5) by letting

X _ oy, (7)

dar
then
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d
yir)= ——Inpc. (8)
dr
Also, the electromagnetic wave equation
U, — [elxuo/c*1U, =0 9)
becomes Eq. (5) if
X _ o] 2 (10)
dr
Here,
1 d
= ———Ine. 11
) S 2 (11)

Balanis has also applied his result to the acoustic wave equa-
tion

U,. — [1/Ex)]1U, =0. (12)
Here,

dx _

71: = c(x), (13}
and

d
=— 8 4
) o Inc (14)

For impedance or dielectric profile inversion, inverse
scattering on Eq. (5)—i.e., determining ¥{r) in Eq. (5) and the
profile in question by Egs. (8), (11), or (14)—is more appeal-
ing than inverse scattering on Eq. (1) or (2). This is because
Eq. (5) is more closely related to the wave equation than Eq.
{1) or (2) is: Only one change of variable is required. Also, the
quantity being sought in Eq. (5), namely ¥{7), has a direct
physical interpretation while ¢g(7) in Eq. (1) or Eq. (2) does
not. For example, in Eq. (14), the reflectivity function®

= 2 tim (—L Ac ) (15)
c(7) ar—0 \A7 2¢ + Ac

is related to the reflection coefficient at a point in the varying

medium, and similarly for Egs. (8) and (11). Finally, as will be

shown, ¥(r) is as continuous or discontinuous as the impulse

response R (¢), up to and including jump discontinuities.

In obtaining his result, Balanis works in the time do-
main. Drawing on his previous results,” he concludes the
validity of the approach for continuous functions (7). The
major result of this note is to extend the validity of the result

© 1983 American Institute of Physics 1148



to include functions with jump discontinuities. We do this by
using a combination frequency/time domain approach.

We emphasize that our results do not constitute a theo-
retical improvement over the approach which transforms
the wave equation into Eq. (1) or (2). There, the quantity
ultimately being sought—e.g., impedance—possesses two
continuous derivatives more than ¢(7), which can sometimes
be as singular as a delta function.’? In our extension of Balan-
is’s theory, the quantity ultimately being sought possesses
one continuous derivative more than ¥(r), which can have at
most a jump discontinuity. But, as we shall discuss, Balanis’s
integral equation does appear to offer computational advan-
tages over Eq. (4).

Il. A GEL'FAND-LEVITAN (MARCHENKO) INTEGRAL
EQUATION AND AN EQUATION FOR (1)

Here, we shall derive the equations central to Balanis’s
theory, namely,

r) =2 di Hlrr) — U 1), (16)
T

where

R(s)ds — F (r,t)
(V]

+ K (rs)R(t+s)ds=0 for |t]| <. (17)
In addition, we shall show the relationship between (7t )
and the function K (7, ) of Eq. (4). These equations will be
derived partially in the frequency domain, partially in the
time domain. Our presentation will closely resemble that of
Balanis’ and Scott ez al. (Ref. 8, Appendix D).
Since Eq. (17) will be derived partially in the frequency
domain, we need the time-independent form of Eq. (5); this is

u., +o’u—yru, =0. (18)

By comparison with the Schrodinger equation (2}, it is seen
that fundamental solutions of Eq. (18) are

filr.w) = explior) — f

P

* sin[w(r — 5)] y

(5) f1s(s,) s,
(19a)

"sin[w(r — 5)]

YIs) fos(s,00) ds,
(19b)

where the subscript s denotes differentiation with respect to
s. From the form of Eq. (19),

Silr.o) = exp( — iwT) + J

Silr,0) — explior) asT—eo, (20a)

folr,0) = exp{ — iw7r) for 7<O0. (20b)
Next, we write

glrw) = folr,0) — exp( — iwT), (21)

and we express the physical wave at a given frequency as a
combination of the linearly independent solutions f5(r,w)
and f5(7, — w) of Eq. (18):

u(r,0) = o) fo{r.o) + fo1, — o). (22)
Then the response at a point in the medium to the incident
wave §{r — t)is
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Urt)=(1/2m) Jw u(r,.w) exp{ — iwt) do. (23)

Using Eq. (21) and computing the inverse Fourier transform
of Eq. (22) leads to

Ulrt)=R(r+1t)
+on Rt +5)G(rs)ds + 8(t — ) + G(r,t),

(24)
where
G(rt)=(1/27) fw glr,w) expliwt ) dw, (25)
R(t)=(1/2n) Jw Hw) exp{ — iwt ) do. (26)
Integrating Eq. (24) with respect to ¢ gives
J" Ulrs)ds
= JT“R (s) ds — J-w R(t+5s) [f G (r,0) da] ds
+H(t~—71)+ Jq G (7,5) ds, (27)

where H (t) is the Heaviside function. [As a check, we note
that the t-derivative of Eq. (27) is Eq. (24) as long as

§* . G(r,5)ds = 0for ¢ > r.] For this problem with y(r) =0
for 7<0, it turns out that G (r,t) = 0 for < — 7.° Also, the
causal impulse response R satisfies R (s) = 0 for s < 0 and, as
noted above, {*_ _ G (7,0} do = Ofors > 7. Therefore, Eq. (27)
can be rewritten as

fiw U(TJ)ds=fi:'R(s)ds—f;R(H,S)

X[ G(T,U)da’] ds+H(t—7')—+—J‘ G (7,5) ds.
o o (28)
Fort<7, §'_ _ Ul{rs)ds=0and H(t — 7) = 0, so that Eq.
(28)isthesameas Eq. (17)for |t | < 7if we make the identifica-
tion

—f G(r,s)ds for t<r,

K(rt)= (29)
0 for 1> 1.
[We note that since G (,¢ ) = Ofort < — 7, ¥ (r,t)is contin-
uous at t = — 7, and since ¥ (7,t) =0fort> 71, F{rt)is

discontinuous at t = 7.] This completes the derivation of Eq.
(17).

Next, we show how J%7(r,¢) and the solution K (r,t) of
Eq. (4) are related. From Eq. (29),

a
Grt)= ——F(rzt),
(rt) % (r.2) (30)
where J¥(7,t ) has a jump discontinuity at 7 = 7. Thus,
G(rt)=06(r—1t) X (r,7)—H(r — t)%.z/,(r,t), (31)

where ¥(r,t )=/ (r,t ) for t < 7. Inserting this expression
into Eq. (24), we see that
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Ulrt)=(1 +W(¢,T))[R (T+1t)+ fT R(t+ 5K (r,s)ds

+6(t—7)+ K.t )], (32)
where, for ¢t < 7,
Kiny) =200
1+ K (r,7)
= — 9 _Hnt) (33)
ot 1+ FH(rr)
or
" Kirsds= — 20 (34
—r 1+ X (r,7)

Since Eq. (32) reduces to Eq. (4) when |t | < 7, Eq. (33) or (34)
provides therelationshipbetween # and K for |t | < 7. It will
be shown below that Eq. (34) also holds on the line z = 7.

To obtain Eq. (16), we first find an equation satisfied by
g(r,w). This is

i, d)
<d1'2+w Vi)t

=(d +a)2—yi) [ /> — exp( — iwT)]

ar dr
= — ioy(7) exp( — iwT). (35)
If we divide this equation by — iw and Fourier transform,
the result is an equation for ¥ (r,t)= — ' _G(r,s)ds:
> s d )
— -y —— | F =)t — 7). 36
(51’2 a? o pmdle =) 36)

Writing this equation in the variables § = ¢ + 7 and
7 =t — 7leads to

AR A

Holding { fixed, performing the 7 integration from — etoe€
and letting € — 0™ gives

43%%@,0) —( &) weo-o(3) (38)

In performing the integrals to obtain ¥(¢ /2), ¥ need not be
continuous at 77 = 0. For example, in the integral

| AT L xeman,
— € 2 877

J (£,m) has a jump discontinuity at 7 =0 (7 = ¢) so that
(0 /dm).% has ajump discontinuity plus a delta-function dis-
continuity at 7 = 0. Integrating the less singular of these
contributes zero in the limit € — 0" [evenif ¥{({ — 7)/2) has
a jump discontinuity at 7 = 0]. Integrating the more singu-
lar contributes the size of the delta function [namely,

lim_ ;. % (¢, — €)] times the average of the values of ¥ on
either side of 7 = 0. Rewriting Eq. (38) in the variables 7 and
t gives

2(% + %) F(rt) — Y1)\ H (r,t) = yir) for t =,
(39)

which is the same as Eq. (16). In Eq. (39), however, ¥(7)
means lim__, [¥(7T + €) + ¥{r — €)]/2.
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An alternate derivation of Eq. (16) can be obtained by
comparing Eq. (32) with a different expression for U (r,t ).
This expression is

Uir,t)= exp[% J: yls) ds] Virt), (40)

where V(7,t ) satisfies Eq. (1). Since V' (r,r) is precisely the
bracketed term in Eq. (32), it follows that

1 T
exp[;Jo ¥1s) ds] =1+ F(r7), (41)
or
d
7)) =2—In[1 + F'(7,7)], (42)
dr

which is equivalent to Eq. (16).
Equation (16), rewritten in the form

A =2 (d /dT).z/(T,T)’
1 + % (r,7)
provides a means for finding the quantity which is the ulti-
mate goal of the inversion. For example, acoustic impedance
p(7)elr) in Eq. (6) is obtained by integrating Eqs. (8) and (43):

plrie(r) = p(0)c(O)[1 + F (r,7)] 2. (44)

Analogous results have been reported in terms of the more
commonly used scattering kernel K (r,z ).'>!! The derivations
of those results are based on quantum inverse scattering
techniques and are independent of the one presented here.
For inverse scattering on the elastic wave equation (6), the
formula is'®

(43)

plrie(r) = p(O)c(O)[l + 7 Kirg)dr ]2. (45)
Comparison of Eqs. (44) and (45) shows that

1+§V(T,¢)=[1+JTTK(r,t)dt]Vl, (46)
which is true if

[lff(TT’(?,r)]z - :TK(T,t)dt. (47)

This, in turn, implies that Eq. (34) holds on the line t = 7,
thus verifying the assertion made earlier.

Finally, it is easy to show that y{7) is as continuous or
discontinuous as the impulse response R (¢ ). From the trans-
formation (40) which relates Eq. (5) to Eq. (1), the function
g(7) of Eq. (1) is equal to }y*(r) — 1¥'(7); this is as singular as
¥'(r). By comparison with Eq. (3), then, y{r) is as singular as
K (7,7), which is in turn as singular as R (27) by Eq. (4).

lIl. CONCLUSIONS

We have discussed a solution of the inverse-scattering
problem for the reflectivity function (7). We have shown
that y(7) can be discontinuous. However, the quantity ulti-
mately being sought must be continuous.

It has been noted that our results do not in theory im-
prove upon existing methods which apply quantum inverse
scattering considerations to a transformed wave equation.
But from a numerical standpoint, it would seem that a pro-
file inversion using Eq. (44) and a discretization of Eq. (17)
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will be preferable to one using Eqgs. (47) and (4). This is be-
cause % (r,t ) isasmoother function than K (r,£ ), afact which
should enhance the numerical stability of schemes for solv-
ing the discretized equation (17).
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The Coulomb Jost states in the momentum representation for all partial

waves in closed form
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We obtain the Coulomb Jost states in the momentum representation for all / in exact closed form.
These closed expressions consist of combinations of the function ,F,(1, i¥; 1 + i¥; +), Jacobi
polynomials, and other polynomials. We also discuss the relation of the Coulomb Jost states with
other quantities that are of interest in the theory of charged-particle scattering.

PACS numbers: 03.65.Nk, 02.30. + g

1. INTRODUCTION

The Coulomb interaction plays an important and, from
amathematical point of view, interesting role in the theory of
scattering by charged particles. Two-particle pure Coulomb
scattering wave functions in the coordinate representation
have been known in closed form for a long time. Often it is
advantageous to work in the momentum representation. In
this case one needs expressions for all relevant scattering
quantities in the momentum representation. The so-called
regular solutions of Schrodinger’s equation with a pure Cou-
lomb potential are known in momentum space for all / (see
below). On the other hand, no closed expressions are known
for the irregular solutions, or Jost solutions, in momentum
space (except for / = 0O; see below).

In this paper we shall derive an integral representation
[Eq. (5)1, a series representation [Eq. (14}], and two hypergeo-
metric-function expressions [Egs. {8) and {17)~{21)] for the
Coulomb Jost states in the momentum representation,
which we denote by ( p|kl 1), forall /=0,1,... . Expres-
sions are also obtained for the closely related quantities
(p|V,. |kl 1)., where ¥ is the Coulomb potential. Prelimi-
nary results have been reported in Ref. 1.

There exists an interesting relationship with the partial-
wave projected off-shell Coulomb 7" matrix in the momen-
tum representation, { p|7T,| p’). Indeed, one and the same
hypergeometric function, F, (-}==F(1,iy;1 + iy;-), plays an
important part in the expressions for these quantities.
Moreover, { p|kl 1}, can be obtained from { p{T,| p') by
letting p’ tend to infinity [Eq. (15)], and also from the Cou-
lomb-modified form factors ( p|gg, ), where gz, are the form
factors of the so-called simple separable potentials, (cf. Ref.
2).

We shall perform a check on the hypergeometric-func-
tion expressions for { p|k! 1) by deriving the Coulomb scat-
tering state in momentum space, { p|k! + )., in closed form.
Such a closed form is known in the literature.>*

We shall use the conventions and notations of Refs. 1
and 4. In particular, we put # = 2m = 1, where m is the
reduced mass, and E ==k ? denotes the energy. The Coulomb
potential is given by V_{r) = 2ky/r, where y is Sommerfeld’s
parameter. The momentum variables p and p’ are real posi-
tive. In this paper we shall assume for convenience that k£ and
y are real positive, too, which often facilitates the deriva-
tions. However, many formulas are also valid for complex k
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and y. In some expressions it is essential that £ has a (small)
positive imaginary part. Whenever necessary, we will assume
that the limit Im k10 is carried out, i.e., we replace k by

k + ie and let €10 [cf. Eq. (25)).

It is important to note that { p|k/ 1), is not a solution of
the Schrédinger equation in momentum representation.
This is related to the (at » = 0) singular behavior of the irreg-
ular solution, ( r|k! 1), of the Schrodinger equation.

2. THE JOST STATES FOR THE COULOMB POTENTIAL

The Coulomb Jost state in the momentum representa-
tion, { p|k/ 1)., is defined as the Hankel transform of
(rlki ).,

(plki 1), =r (pl |7 (rlkiT), P dr, (1)
where
(plir)y =@2/m)'"2i ), pr). (2)

In the coordinate representation we have the well-known
expression,

(rlkd 1), = (/7" €™ (kr) " W _ sy 10 (— 20k7).
(3)
By using the integral representation (Ref. 5, p. 313)
W_niorn@ =(/T{1+1+iy)e =240

XJ. e—zttl+iy(l+t)1—iydt
0
and the equality®

f r'* %= ) pridr = 2a(2p) (I + W +p%) "% (4)
0
we obtain, after some manipulations,

20+ 1)/ (—2)‘*‘

ki), =—"" "< (==
{plkl ) 7p( p*-k ?)

v
f‘ (1—e3el+w dt
o [(1—ta)(1 —t/a)]'*?
Here f,, = f,(k)is the Coulomb Jost function,
fu=e"?IVr{+1+iy),
and
a=(p—k)(p+k)
v={(p*—k?)/(2pk).

(5)
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From Ref. 7, p. 238 we have, for any potential ¥,
(p|V,|klt)y = (k> —p)) (plkit) + 2(mk)~p/k) f;. (6)
From (5) and (6) we derive in the Appendix

2 —2)+!
olValkin. =227, (2)
tl+ir

d
XL [(1 — ta)1 — t /)] +! !

(7)

After carrying out some more manipulations we obtain from
Eqgs. (5) and (7), respectively, (see the Appendix),

(plkit). ———(—;{— [X,(x) —x'
+ {Fyla) — 4} Pi™ 7" (u)
— [Fy(1/a) = 4} "~ ()], (8)

(pIValkit), = ,, S (%, 0
+ {Fyla) =4} Pi™ 7" (u)
— {F,(1/a) =3} P~ " (w)].  (9)
Here
Fo () =Fi(Liy;1 + iy;-),
x =p/k,
u=(p*+k*/(2pk)=4x+x7"),
P'*8)is Jacobi’s polynomial, and X is a simple rational func-

tion of x and of y: X, = X,{x) = X,(x;y). It is defined by the
following recursion relation (X, = 0),

T+ 10X, =3+ Dix+x7 )X,

d
2Ly
+ ix )dx !

+yx Im P~ M(x +x"1/2), (10)
where x and y are supposed to be real. Denoting P~ "(u)
for the moment by P,, we have (cf. Ref. 5)

Py=1,
P =u-+1y,
= 436 + 3iyu — 1 — 1),
=1 [154® + 15ipu® — u(9 + 67%) — ily? + 4)).
We have found from (10}

X,= X, =0,
X,=17x,
(11a)
=4 V(1x* +5),
X, = (1/96x) ¥ — 49°x* + 57x* + 48x” + 35).

We list some interesting properties of X;:
X, is real when x and ¥ are real;
it is a polynomial in 9%

its parity is ( — ) * '/ * ! X,(x) is even in x;

X(1)=1- Re(l +1 i”) [see Eq. (24)].
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We contend that the function Y, defined by

Yoy) =221y 2 x' 2 X, (x;9) (11b)
is a polynomial in x? and in 77, with real integer coefficients,
that its degree in x? is / — 2, and that its degree in  is Entier
(3/ — 1), for = 2,3,4,-- . From Eq. (11a) we have

Y0=Y1=0, Y2=1,

Y,=7x*+5,

Y,= — 4y x> + 57x* + 48x% 4 35.

We have obtained two representations for ( p|ki 1),
[see Eqgs. (5) and (8)]. Now we are going to deduce a third and
a fourth one [see Eqs. (14) and (21)]. We shall utilize the
equality.

lim B2+ ( plgs)
B~
— (7/2)1/2fc7 1 kl+ 1(p2 —k

(11c)

A {plklt)., (12)

which will be proved in the Appendix. Here gz, is the Cou-
lomb-modified form factor

(plga) = (PG s 'Glga),
where

(P|g;31> — (2/77)1/2P1(P2 +ﬁ2)—l— I.
By using an expression for { p|gg,) obtained in Ref. 2,

. __(2/77')”2 —2k/v\ !
(plga) = (ﬁ2+k2)
— n B+’k 141
X =Z+1 iy (B tk) C.m_y (w/v), (13)

we get from Eq. (12)
2/ ( — 2)’* !
mp(p* — kz) v

>

nsTe1 B0y

(plklt), =

C1+1

_ 1 (u/v). (14)

The infinite series in (13) and (14) are convergent when the
energy k *is negativeand O < p#p’ > 0. [We have derived Eq.
{14} also in a different way: By comparing Eq. (5} with the
integral representation for the Coulomb 7" matrix given by
Eq. (24), p. 25 of Ref. 7 we get

T,|p) =L kplak)*(p>~k?) (plkl 1),

Xe "2+ 1+iplV/(21+ 1)
(15)
By substituting for ( p’|7,| p) the infinite sum containing
products of Gegenbauer polynomials given by Eq. (12) of
Ref. 2, we easily obtain the verification of Eq. (14).]
By using

(=20 CLtl_(u/v)=a" P~ "(u)

lim p'*2( p'|
p'—*no

—(=)a="P"="(—u) (16)
we obtain in the same way as in Ref. 2,
2f.
(pIValkit), = p’zma;l), (17)
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Z(al)= [ F,la)— 1] P}~ "7y

’y(11> 2)_11_1

v_l

— (=Y iyC(l+ 1 +iy) li] (l+m)£__l)_,:

a’/lv+iy)

m=0 / (l—m}!
m aV
X
I‘(m+1+iy);::1v+iy
_ ml m~l lu|
u=0 I +m+2+iy)
(a~l ]—(—l)[ldem, a—1/a}. (18)

Here, and henceforth, {Idem, a—1/a} means that all fore-
going expressions on the right-hand side should be repeated
after @ has been replaced by 1/a everywhere. We have veri-
fied explicitly for / = 0,1,2 that Eqgs. (17) and (18) are in

agreement with Eq. (9). Different expressions for Z,(a;1) are

Z/(a;1) = —12

: a Y (21-;1) .
1_ n
l+1+iy(1—az) ,Z’o / (1—a)
XoF\n+ LI+ 1+ iyl 4+ 2 + iya)
—(—)'{Idem, a—1/a}

__ lya ( a )’ Z’ (l+m
I+1+iy \1—a) &0\ 1

XL F{l,m + 1+ iyl + 2+ iya)
—(—)"{Idem, a—1/a}. (19)
In particular the last expression is convenient for numerical
calculation, because the sum of the first two parameters, mi-
nus the third one, of the hypergeometric function is equal to
m — [, which is a nonpositive integer. Consequently the cor-
responding hypergeometric series converges for |a|<1. (Ex-
cept when m = /; in that case the value g = 1 must be ex-
cluded.)
From Egs. (9) and {17) we get
Z,(a;1) = X,(x) + i Im P{" = M(u)
Fyla) Py 7"fu)
F, (1/a) P{" = ). (20)
By comparing this with Eq. (18) we have

X,(x) — iIm P~ "(u)

o y(,')u—aZ)—'iv] /v + in)

YRR R (ltm)——(az_ e

)(1+a)“"’

=0 (I — m)
m aV

X —~a”

I'im+1+41iy) Vz’. v+ iy

I—m—1 1 m+ 1

)|

X

,,;o Fp+m+2+iy)\a—1
— (—) {Idem, a—1/a]}. (21)

We want to derive a simple expression for X, (1). When
x=1,p=k a=0,and ¥ = 1. From Eq. (21) we obtain
X,(1)—iIm P{»— 7 (1)

_Ti+1+i, Iil !
I ol u+2+iy)
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By using

pir oy = (") 22)
and (cf. Ref. 8)
iy[k] I'u+1) _ 1 i+ 23)
Wol(p+24+iy) I'(l+iy) T{+1+)
we get
. i
-7 na('57)
ie.,
X()=1— Re(H;W) =1—RePir—71).  (24)

Finally we shall derive a simple expression for
(p|V. |kl + ). from the expression for { p|V,, |kl 1), given
by Eq. (9). We have

e pIValkl +),
=7 pValkit), —e " (p|V,|klL),
=7 (p|V,lkl1), —cc.
Since X; is real and ¢’ £, is real for real k and 7, we obtain
from (9)
(pIValkl+) =ilap)” " fE[{ — 1 + F,(1/a)

+ F_{@a*)} P~ Mu) —c.c.].

We use the equality

F_,la)+F,(1/a)=1+T(1+ iy (1 —iy) —a)”,
and

F7 iy(a) - F— iy(a*) = 0’

(—a)"=e~"a",
[Note that the sign of Im k is important here:
a=(p—k—ie)/(p+ k + ie), €10.] In this way we obtain

<p'Vcl|kl + )c =;Clyfc7l
mp

where
H (1+9°/n?),

cil—-(1+iy)(l ‘}’)
v l l n=1
fal=e {1+ 1+ iyl

Equation (25) is in full agreement with a previously obtained
result [see Ref. 4, Eq. (7.7)].

Summarizing, we have obtained an integral representa-
tion for { p|ki 1), and for ( p|V,, k! 1), [Egs. (5} and (7)],
and expressions containing the hypergeometric function £,
the Jacobi polynomial P~ ), and a simple rational func-
tion X, [Egs. (8) and (9)]. For the function X, we have given:

(i) explicit expressions for / = 0,1,2,3,4 [Eq. (11)],

(ii) a recursion relation [Eq. (10)},

(iii) a finite-series expression [Eq. (21)], and

(iv) a simple explicit expression in the special case p = k

[Eq. (24)].

[a” P~ M(u) ~ c.c.], (25)
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APPENDIX

In this Appendix we shall prove (i) Eq. (7), (ii) Eqgs. (9)
and (10), and (iii) Eq. (12).
(i) In order to derive Eq. (7) from Egs. (5) and (6), we
introduce the function 4,,
1
h,(z)=iyf (14+t2—z)~'"1er*ds, (A1)
0

where z = a + a~ ! [cf. Eq. (7)]. We rewrite A, and perform
integration by parts

1
h,(z)_—_iyf t+t =z~ 7 dr
(o]

=+t~ """

1
—f(t—f—t“
(4]

=Q2-27""'=(+1)

—Z)7 I+ e TP =) e de

1
xf (1+22— 1)~ "3l — 7+ 1dr. (A2)
0

By substituting
2—z=2—a—a '=4k%Yk*-p}
the proof of Eq. (7) follows easily from Eqgs. (A1) and (A2).
(ii) Now we shall derive Eqgs. (9) and (10) from Eq. (7). By
using Eq. (A1) and inserting
a—a '=4pk/k?—p*) = —2/v,
Eq. (9} can be rewritten as
(@—a Y+ hlz) = X,(x) + i Im P{" ~ M(u)
+ Fya)P |~ ""u)
— F,(1/a)P{"~ Mu). (A3)
We shall prove this equation by induction on /. First we shall

verify explicitly that Eq. (A3) is valid for / = 0. Inserting
X,=0,P)'=1,and

1
F,l(a)= i}/f (1—ta)~ 't~ 'ds,
0
the right member of Eq. (A3) becomes

(1 1 o
iy - t"=1qgr
o \1—ta 1—t/a

=(a—a_‘)i}/fo [+t —t@+a )] 't7dt

= (@ —a™ ),
which completes the first step of the induction proof.
Now we differentiate both members of Eq. (A3) with
respect to x=p/k. We recall

(A4)

1 &

a+a"=z=2x +1,

x2—1
x?

1

y U= +
x+1 2x
and use

ly( )

_r _wp
R (AS)

1155 J. Math. Phys., Vol. 24, No. 5, May 1983

(1 _ 22) P(l'r ~17l(2)

P — g P, (A
D e =1+ 1) by (2) (A7)
dz

Introducing the (for real ¥ and u) real functions R, and
I, by

Pir—Mu)=R, + il
we obtain in this way from Eq. (A3),

x*—1 2y
Xx)+1i 1]+
(x) = Ty

(R, —iI})
n 2iy
W t—a
F, (a)[ 2L oy

(R, + iI})

-1 d
sz du
F, (a—')[————z‘y1 Py =)

-1 d
sz du
I+ 1 14x?
x 1—
WP )]
21(1_+ D [X1+1 +ily + iy(a)P(l;IlYW)( )

Fola WP 7 M(u)].

4 pi—m m(u)]

Ly

5 [X +il, + Fy(a)Pi™ "7 (u)

(A8)

The coefficients of the corresponding hypergeometric func-
tions in both members turn out to be equal. By equating real
and imaginary parts we obtain

x2+1 )
U+ 10X, =0+1 X, + 4(x” — X[ + yxI,, (A9)
and
(x X2+ 1

——Z——)—I, FYR =+ 1, , — (I + 1)I,. (A10)

X

Here Eq. (A9) is just Eq. (10) rewritten and Eq. (A10) is an
equality which can be verified independently. We note that
I here means (d /du) I,.

(iii) Finally we shall prove Eq. (12). In fact we shall
prove a more general relation, which holds for any local po-
tential V:

im B**2 (plgg)
B0

=(@/2)! 2 f kTPt — k%) (plkiT),, (A1)

where f; is the Jost function corresponding to V. Let G, and

T, be the resolvent and the transition operator associated
with V. Then

G, =Gy + Gy, T,Gyy,s
and

|g§1) =Gy ! G, Igm)-
Since

(plga) = (2/m)'*p'(B* +p*) "',

(A12)

(A13)
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we also have
llm B21+2 (plggl)
B

=<2/7r>”2(k2—p2)f (PGP P! 2 dp (Al4)
0
= (2/m)'? p' — (2/m)"?

o p11+2
X T,|p) ———dp.
| amie) e
In order to prove Eq. (A11), we use
(PIG Iy ={—1"* " iak (r_lki+) (r |kit),
(A16)

(A15)

which holds for any local potential, and
lim r ! rlkl +) = Q2/m)2F ik YTV QRI+ 1) (A7)
The coordinate representation of g, is given by [cf. (A13)]
(rigg ) =r'"te Pli/2) /1L (A18)
From (A 16) and (A 18) we derive
lim 8%+ (r|G,|ga)
f—w
=(— )"k (1)~ i/2) { r|ki 1)

xlimﬁz’”f frlgmig—1-2 <é,k1+>dr.
(¢]

B—x
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By using Eq. (A17)and & t** ' e~ *dt = (2] + 1)! we easily
obtain

;im B21+2 ( r|Gl|gBI> = — (77,/2)1/2]-1— Tkir! (r|k1T),
B (A19)

hence

Blim B21+2 (P:Gl|gg1> — (77/2)1/2f1_1 k1+1 (p|kl T)-
(A20)
Substitution of (A12) compietes the proof of Eq. (A11).
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The unitarity relations for the off-shell Coulomb 7 matrix for all partial waves

H. van Haeringen

Department of Mathematics, Delft University of Technology, Delft, The Netherlands

(Received 1 December 1981; accepted for publication 5 March 1982)

By employing a recently obtained expression for the partial-wave projection of the off-shell
Coulomb T matrix for all /, we prove that the unitarity relations for the Coulomb 7" matrix hold
provided that they are properly modified with the help of Coulombian asymptotic states.

PACS numbers: 03.65.Nk

The well-known optical theorem establishes a simple
relation between on-shell matrix elements of the transition
{T') matrix associated with any short-range interaction. For
the partial-wave projected T operator T this relation is giv-
en by

Im(k |T,k) = —drk [k [T KD, k>0, (1)
Here the units are chosen such that #i = 2m = 1 and the en-
ergy-dependence of T, = T,(E ), where E = (k + i€)?, €10, is
suppressed.

Equation (1) is a direct consequence of the unitarity of
thescattering (S ) matrix, S 'S = ST = 1. Theso-called uni-
tarity relation for the off-shell T matrix (cf. Refs. 1 and 2)isa
generalization of Eq. (1). It can be expressed by

Im(p|T,| p') = — 4wk (p|T,|k )k|Tlp), k>0,
(2)

where the momenta p and p’ are real positive. We note that
the off-shell T matrix { p|T,|p') is symmetric in p and p’.
The unitarity relations (1) and (2) are not valid for the

Coulomb T matrix, T,,. As is well known, { p| T, |p’') has no
half-shell or on-shell limit (i.e., for p—k, p'—k ). There exists
a simple prescription for dealing with the half-shell and on-
shell singularity of { p|T,,| p'). A convenient and consistent
notation and prescription is provided by the so-called Cou-
lombian asymptotic state |k o ). If applied to T,, this state
can be expressed by [see Ref. 3, Eq. (16)]

(plkloo)=(plke)
=k "28(p — k)[2k /(p — k — ie)]”
xe™* /(1 —iy), €l0, (3)

where y is Sommerfeld’s parameter. The connection with the
time-dependent Coulomb scattering theory has been given in
Ref. 3. By replacing in Eq. (2) |k ) by |k ) and T, by T, we
get the unitarity relation for the off-shell Coulomb T matrix:

Im(p|T,lp') = — 4wk {p|T,lkoo) (koo |Th|p') ,

k>0. (4)

The main purpose of this paper is to prove Eq. (4) by
using the explicit expression for { p|T.,|p’) that we have re-

cently obtained.*
We shall also prove the equality

(PIVylkl+ ), = (p|T, k), (5)

where |k/ + ) is the Coulomb scattering state with energy
2

Furthermore, we shall prove [cf. Eq. (9.73) of Ref. 5]
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(koo — |T, ko) ~i(mk )" [¥ — e¥2k /€)*7] , €10,
(6)
where o, is the Coulomb phase shift. From Eq. (6) we shall
derive that summation of the partial-wave series, if summed
in the proper way, i.e., with exclusion of the forward direc-
tion (see below), just gives the Coulomb scattering ampli-

tude.
In Ref. 4 we have proved

(p|T,lp"
J— ’\2
- _ch,,[(iy)-‘?, +&, + z,ln(" +P,) ] (7
7pp p—r
Here
(N !
=)= B

n=1
F | = Fyyaa'\P\ = #M(u)P, ~ m7(y)
+ Fy((aa) )P, = )P, =
— Fyla/a )P, = "ru)P, ~ )
— F, (a/a)P,\" = Mu)P, = 0y 8)
where (k = k + i€,€l0)
a=(p—k)(p+k),
u=(p*+ kA/(2pk),
and
Fo,()=2F(Liy; 1+ iy;).
Closed expressions for €, and .#, have been given in Ref. 4.
Here we need these expressions in the particular casep’ = k,

and moreover we need Im %, and Im .&,. Assuming that p,
D's k, and y are real, we have

a=(p' —k)(p +k),
w'=(p?+k*/(2p'k),

Im.7Z, =0,
Im#, = — 2y~ 'ImP,"" ~ M(u)ImP,"" ~ M(w').  (9)
Furthermore,
Zip =k)=0,
I —i o
g0 =k1=2~(' M mpir . g

These equations are sufficient to prove the Coulomb unitar-
ity relation given by Eq. (4), and to prove Egs. (5) and (6).
We begin by evaluating ( p|T,, |k« ). When p'—k,
a’-+0 and u'—1, hence P,\"— ’”(u‘)—»(l +1i7/). Considering
Eq. (8), we observe that F, (aa’) and F, (a’/a) tend to 1. The
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two remaining hypergeometric functions, F, (a/a’) and
F, ((aa’)™"), have to be transformed. By using the equality

F_,@+F,(1/2) =14+ T (1 + i) (1~ iy)—2)7,
(11)

and Egs. (8}-(10), we obtain

PITalp » e, (P
Pk Tpp !

X [( _ aa')in,‘i"' —ir)(u) _ ( — a'/a)"’P,‘ - i%ir)(u)] .
By applying Eq. (3), we obtain, after some manipulations,

(pITalkoo) = =mr LU+ T
o mp Ti+1—iy

xlim[a"P" ~M(u) —c.c.], (12)
€10

)ri+mra—m

which is just equal to { p| ¥V, |kl + )., according to Eq. (7.7)
of Ref. 5. This completes the proof of Eq. (5).
In order to prove Eq. (4), we have to evaluate the left-
hand side. From Egs. (7) and (9) we have
Im(p|T,|p’) = (ﬂpp')_lkc,V(Ref‘_, —yIm#&,). (13)
Assuming for definiteness 0 < k <p <p’, we obtain from Eq.
(8), by using Eq. (11),
F 1+ Fr = L1+ i)*[(— aa )P = ()P~ V')
—(— a/a')i”P,(iV' - i"'(u)P,( - l'%ir)(u')] + c.c.
+ [P,“’" - ir)(u) _ PI( —ir‘ir)(u)]
X [P\ =) — P~ W) . (14)

A careful analysis of the branch cuts leads to
(—a/a'y*=e™a/a'|T. (15)
Details can be found in Appendix F of Ref. 5.
By inserting the expression for Im&’, given by (9) into

Eq. (13), and using Egs. (14} and (15), we obtain
Im( p|T,|p") = (27pp’)~'ke = ™| (1 + iy)|c,,

X (|a{"P,"" = Mu) — c.c.)

X(|a'|'""P" = ') — c.c.). (16)
The proof of Eq. (4) is easily obtained from Eqs. (12) and (16).

Finally we want to derive Eq. (6). We consider the quan-
tity  p|T.;|k ) for p—k. From Eq. (12) we get

(—ad')"=e ™|aad'|",

(pIT. ko) — i(mk)™'e =" (1 — iy)
p—k
X [a7e — g* = Te¥on] | (17)
where
=T+ 14i)/C(l+1—i).

We apply (ko — | to both members of Eq. {17). According
to Eq. (3), we have to multiply the right member by

a~ 7™/ (1 —iy),
and take p—k, €10. We point out that
a~"a*~ "2k /€7,

whereas a””a ~ 7 = 1. In this way the proof of Eq. (6) is com-
pleted (see also Sec. 9D of Ref. 5).
Equation (17) shows that the on-shell limit { p—k }of the
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physical half-shell partial-wave Coulomb 7" matrix

(p|T, ko) does not exist. Also, the on-shell limits ( p—k,
or p'—k ) of the off-shell partial-wave Coulomb T matrix
{p|T.|p’) do not exist. This is analogous to the situation for
the three-dimensional Coulomb T"matrix (3|7, |p'). The on-
shell limits ( p—k, or p’—k ) of this quantity do not exist.
Also, the on-shell limit of the physical half-shell Coulomb T’
matrix (3|7, |k ) does not exist (cf. Ref. 6).

Application of the three-dimensional Coulombian
asymptotic states |k oo ) to the three-dimensional Coulomb T
matrix does give the right Coulomb scattering amplitude,
ie.,

(koo = |Tfkeo)
= — 2"\ k-k’), k'#k, k'=keR",
where

fx) = —(v/2k)e¥ ™y —x) . (18)
In contrast, application of the partial-wave Coulombian
asymptotic states |k oo ) [cf. Eq. (3)] to the partial-wave Cou-
lomb T matrix does not lead to well-defined on-shell limits.
This is clear from Eq. (6). However, it is interesting to note
that the singular part of (ko — |T.,|k o ), containing the
singular factor € ~ 27, is independent of I. Consequently, if we
sum the partial-wave series before taking the limit €10, this
singular term gives a contribution that is proportional to
€~ 275(1 — cos 0), as is clear from the equality

li (I + YPyx) = 8(1 — x) .

As discussed by Taylor,” the Coulomb partial-wave series
2(! + L)P,(cos 8 Jexp(2io;) can be summed in the sense of dis-
tributions if only test functions are allowed that vanish in the
forward direction, i.e., for § = 0. Formally, this comes down
to putting § (1 — cos 8) = 0. Therefore, the singular part of
(ko — |T,;|k o) containing the factor € ~ >” vanishes by
this procedure. By summing the remaining nonsingular part
in the partial-wave series we get

S (47)7 (2 + VP fk Nkoo — | T lko)
1=0

= (koo — |T, ko), k=k'>0, (19)

which follows from Refs. 3 and 7, according to

2 (I + P (x)exp(2io;) = ik f(x), (20)

where f “ is given by Eq. (18). The partial-wave series for on-
shell T"matrices associated with short-range potentials can
be written as

S (4m)7 1@+ VP kk )k | T, k) = R ITR Y,

I=0

k=k'>0. {21)

Clearly Eq. (19) is just the Coulomb analog of this equation.
In this way we have obtained the satisfactory result that the
partial-wave series of the “on-shell” Coulomb 7 matrix with
the Coulombian asymptotic states, if summed in the proper
way (i.e., excluding the forward direction), gives the Cou-
lomb scattering amplitude.
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In this paper we have derived, by using exact analytic
expressions, the Coulomb generalization of the following re-
lations familiar in short-range potential scattering theory: (i)
The off-shell unitarity relation for the partial-wave 7" matrix
for all ] [Eq. (4)]; (ii) The relation { p|V,|kl + ) = { p|T,|k)
for all / [Eq. (15)]; (ili) The summation of the partial-wave T’
matrices [Egs. (6) and (19)]. The restriction to the pure Cou-
lomb potential is not serious. For Coulomb plus short-range
potentials one can construct corresponding quantities from
the pure Coulomb ones in a well-known way.*>®

Nuttall and Stagat® have evaluated a modified unitarity
relation for the three-dimensional Coulomb T matrix for res-
tricted values of the momenta. In the simple and convenient
notation introduced in Ref. 3 it is expressed by'°

@I, ) = — 7k | GIT.[ken) kool TL1P) d
2

where the integration is over the unit sphere, [k | = 1. The
similarity of Eqs. (4) and (22) is consistent and satisfactory.
The restriction on the momenta in Ref. 9 can be easily re-
moved, '’ as has been noted by Chen and Chen.'! These auth-
ors have shown that the off-shell unitarity relation for the
three-dimensional Coulomb 7-matrix does not have a well-
defined on-shell limit. See also their review article on off-
shell Coulomb amplitudes. '?

Our proof of Eq. (4) presents a complement to this work
on the three-dimensional Coulomb unitarity relation. This
explicit proof could be given since a closed formula for
(p|T.| p’) became recently available.*

In conclusion it appears that there is no “violence of
unitarity”” in Coulomb scattering. One only has to deal with
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singularities that are more complicated than poles and Dirac
delta functions (distributions). Instead one encounters in
Coulomb-scattering quantities branch-point singularities
and more complicated (than § ) distributions, respectively.
The modification we have introduced takes care of these sin-
gularities in a well-defined and elegant manner.
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For the three-particle, two-cluster, 2 X 2 channel coupling Hamiltonians used, e.g., in H;* and He
bound-state calculations, we demonstrate that typically there exist unique eigenvectors for all
bound states. This result also holds, with some technical assumptions on the potentials, for the
corresponding 3 X 3 case provided there are no spurious eigenvectors with bound-state
eigenvalues. The proofs use the analogous results for the corresponding Faddeev-type
Hamiltonians together with spurious multiplier relationships.

PACS numbers: 03.65.Nk, 03.65.Ge

I. INTRODUCTION

Inherent difficulties with the standard Lippmann—
Schwinger equation approach to many-body scattering the-
ory' have lead to the development of a variety of alternative
approaches. These are often based on decomposition of the
wave function or T-matrices into components associated
with various clusterings (arrangement channels) of the parti-
cles.” The “arrangement channel quantum mechanics” ap-
proach? for a system of N nonrelativistic particles is charac-
terized by a non-Hermitian Hamiltonian H with compo-
nents H,; labeled by some subset of the ¥ particle
clusterings a, 3, - . These satisfy*

Y H,z=H forallp, (1)

where H is the N particle Hilbert space Hamiltonian. From
Eq. (1), any eigenvector ¥ of H with components |, ) and
eigenvalue A is either (a) physical satisfying 2, (¢, ) = |¢)
#0andA = E,where H |¢) = E |) or (b)spurioussatisfying
3.t =0.

Despite a recent analysis of the structure of general H,’
there are still many unresolved questions. For example, if
there exists a physical eigenvector of H for each one of H and
if the spurious eigenvectors span {¥: 2, |¢, ) = 0}, thenHis
scalar spectral (its eigenvectors and their biorthogonal duals
provide a spectral resolution of the identity). However, at
present, the only nontrivial cases for which this has been
proved are some three-particle Faddeev-like choices H.%’
Should H contain the appropriate physics, then clearly the
existence of a “representation” where the wave function nat-
urally decomposes into arrangement channel components is
extremely useful.* The first application outside of scattering
theory involved molecular bound-state calculations,® de-
spite the lack of a proof of existence of these solutions for the
Baer-Kouri-Levin—-Tobocman Hy used. Dramatic early
successes with simple wave function component approxima-
tions suggested existence of the solutions considered and
also a rigorous basis for atoms/molecules-in-molecules pic-
tures. These results are supported by more recent finite-ele-
ment method calculations.® The significance of a rigorous

® Operated for the U.S. Department of Energy under Contract No. W-7405-

ENG-82. This work was supported by the Office of Basic Energy Sciences.

1160 J. Math. Phys. 24 (5), May 1983

proof of bound-state existence and uniqueness should be
clear from the above discussion and is given here for three-
particle, two-cluster, 2 X 2 and 3 X 3 Hy using this property
for the corresponding H..

Il. BOUND-STATE EIGENVECTOR EXISTENCE AND
UNIQUENESS

For a system of three distinguishable particles labeled
i=1,2,3, we denote the two cluster channels / = (i)(j k),
where {i,/, kK } = {1, 2, 3}. Let T be the kinetic energy (with
center-of-mass part removed) and V; = V;, the potential in-
ternal to channel , so H; = T + V;. We assume the particles
act through pairwise potentials, so H = H, + V' for all i,
where V! =V, + V,.

Consider first the 2 X 2 channel coupling Hamiltonians

H, V?
HB:(I )’ HF:(H1+V3 V1+V3) 2)

V' H, v, H,
that are related through the identity
(A —Hg) =1 —Hg)1 + M), (3)

where the “‘spurious multiplier” M{4 ) = Gyl )(Hr — Hp)
and Gyld ) = (A — T)~". An “integral” form of Eq. (3) can be
obtained by multiplying from theleft by Gy(A ) = (4 — H) ™!,
where (Hy),; = 8; H,.If |¢) is a bound state of H with eigen-
values E < 0, then the corresponding H;. eigenvector is given
by’
_ (Go(E)(V1 + Vs)lll'))
Yp = - 4)
Go(E)WV ¥

From Eq. (3) and the summation condition (a) for physical
eigenvectors, any corresponding Hjp eigenvector ¥z must
satisfy

(I + ME g = e (5)
If E > 0, then it is readily verified that the expressions of Egs.
(4)and(5)stilthold with G(E } = P(E — T)™ ', where Prepre-
sents the Cauchy principal value integral. Equations (4) and
(5) motivate the following result:

Theorem 1: Suppose that the eigenvalue E of a bound
state |¢¢) of H is not in the spectrum of H; =T — V5. Then if
Gi(A)= (/I _H3)WI:

_(GSE)V, + V3)l)

= . 6
Vs (|¢> _GEW, + V3n¢>) ©)
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is the corresponding H eigenvector. If £ is in the spectrum
of H3 but does not correspond to the threshold energy of
some H, partially bound state or the complete breakup, then
Eq. (6) still holds with G3(E |=PE—H A

Proof: The simplest proof of Eq. (6) is via direct substitu-
tion into the H, eigenvalue equation. For motivational pur-
poses, we remark that this form of ¥ can be obtained from
Eqg. (5) by noting that, formally,

L _ (U GEW)T 0
(1+ME) " = (1 — (L 4+ GEW4) ™! 1)

_ (Q(EA)(E ~T) 0) -
—GENE-T) 1
and substituting from Eq. (4) for ¥. B
Starting with a modified choice of H, where ¥; now
appears on the second row, one similarly obtains

by = (L'/’) = GENV, + V3)|¢)) 8)
P UNGEN: + Vill¥)

The consistency of Egs. {6} and {8) is readily verified. Suppose
that particles 1 and 2 are identical so that |¢) is either gerade
|#*) or ungerade |¢ 7). Let [¢4), i = 1, 2 denote the chan-
nel components of the corresponding ¥7F and let P, be the
operator which interchanges particles 1 and 2; so
[+ ) = + P,|¢* ). Then using the expression for |¢F;)
from Eq. (6) and |¢ 2, ) from Eq. (8), one recovers the pre-
viously observed result®

|¢§t1>= iP|z|¢Btz>' (9)

We remark that the ¥ () are strictly only eigenvec-
tors if their components lie in the three-particle Hilbert
space [T- H3 ) boundedness of the ¥, is sufficient®]. Then
the results of Ref. 7 show that since the physical H; and H,
(weak) eigenvectors include all scattering solutions and their
spurious (weak) eigenvectors span {¢: 2, |¢,) = 0}, these
Hamiltonians are scalar spectral. If the components of any
V{5 ) be outside the three-particle Hilbert space, then the
corresponding E is in the residual (rather than point) spec-
trum of He(H,).?

The Hamiltonian Hy was first used for H + e scatter-
ing'? and since for H,, He, H™ bound-state calculations.® A
natural assignment of particles 1, 2, and 3 is made so that no
(1 2) pair bound states exist. The analysis above applies
where all degrees of freedom are retained, as well as to the
Born—Oppenheimer (BO) case, where the nuclear kinetic en-
ergies are ignored. Except for the BO H;" case, an infinite
number of H partially bound states exist.

We now consider 3 X 3 choices of Hx and Hy corre-
sponding to the above system where the existence of bound-
state solutions is of considerable theoretical and possible
practical interest. Here we have

H, 0 V3 H V, ¥
Hy=|V' H, 0 |, H.=|V, H, V, (10)
0 vV H, v, V, H,
that are related through the identity
(A —Hz) =1 —Hp(1 + M), (11)

where the “spurious multiplier” M'{4 ) = G,(4 )(H; — Hj).
The familiar integral form of Eq. (11}'! can be obtained by
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multiplying from the left by G5(4) = (4 — H§} ™', where
(Hg); = 8,H,. For a bound state [¢) with E <0, the corre-
sponding unique Hy eigenvector is given by (V5 ),

= Gy(E WV, |¢) for k = 1, 2, 3.° From Eq. (11) and the sum-
mation condition (a), any corresponding H eigenvector ¥
must satisfy

(1+ M(E) =45 (12)
If E> 0, the expression for ¥} and Eq. {12) still hold with
GyE) = P(E — T)~'(cf. above). Equation (12} motivates the
following result:

Theorem 2: Let E #0 be the eigenvalue of some bound
state |¢) of H. Suppose that V satisfy the conditions of Hun-
ziker’s theorem'? and guarantee that M'(E ) is bounded. (We
assume T-boundedness for the latter.) Then either there ex-
ists a unique eigenvector V¥ of Hy satisyfing Eq. (12) or Hp
has a spurious eigenvector with eigenvalue E. In the latter
case {nonunique), P exist only if certain biorthogonality
conditions are (accidentally) met.

Proof: A simple calculation shows that (M'(4 })* is con-
nected.” Consequently, since M'(4 ) involves only the free
Green's function and given the assumptions on ¥, Hun-
ziker’s theorem may be applied to prove that (M'(4 ))* is com-
pact.'? Then from Fredholm theory’® and noting that
(1 — M'(E' )1y is normalizable, it follows that either

(1 — (M'(E)Wy = (1 — M'(E )bk (13)
has a unique solution V3, which also satisfies Eq. (12}, or
(1 —(ME)=0 (14)

has a nontrivial solution. In the former case, to show that b
in Eq. (13) satisfies Eq. (12), one simply notes that

(1 — (MEPO +M(E ), — b} =0. (15)

Let P(4, M) denote the M-invariant projection operator
onto the eigenvectors of the operator M with eigenvalue 4.
Then a simple calculation, e.g., using a Dunford contour
integral representation for the P’s,'* shows that

P(+ 1, M(E)) = {1 £ M(E)P(L, (M(E))), (16)

which is bounded, since M’'(E } is bounded. Thus, if ¥ satisfies
Eq. (14), then either (1 + M'(E))b =0o0r (1 — M'(E )Y = 0.
Suppose first that the former is satisfied for some solution of
Eq. (14). This is just the familiar condition for ¢ to be a
spurious Hj, eigenvector with eigenvalue E.'* Second, sup-
pose that the latter is satisfied for a// solutions of Eq. (14). If
£’ denotes a three-component dual-channel space vector,
then from Eq. (16) it is clear that all solutions of

(1 — (M(E))?) = 0 satisfy &'(1 E)) =0 Thus, from
Fredholm theory, Eq. (13) still has (nonunique} solutions ¥j.
Furthermore, the choice of V¥, biorthogonal to all the above
€' is the unique solution of Eq. (12).

Finally, we note that if spurious eigenvectors exist, then
the corresponding solutions of £'{1 + M’'(E )} = 0’ must be
biorthogonal to ¥} for there to exist a solution ¥} of Eq.
(13). ]

The possibility that physical bound states can be re-
placed by spurious solutions has been anticipated from gen-
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eral spectral theoretic arguments. These show that the point
spectrum of H is contained in the union of the point and
residual spectra of H (Ref. 5}, from which this replacement
strictly follows only if the eigenvalue of a “missing” bound
state is physically nondegenerate and not contained in the
residual spectrum of H. An explicit example of this replace-
ment phenomenon has been given in Ref. 15. Of course, a
similar analysis to that given above follows for the other
channel-coupling choice of 3 X3 H;.?

Finally, we remark that if a true three-body potential
V.5 is included diagonally in the Hamiltonians of Eq. (2),
then the analysis goes through the minor modifications. For
those of Eq. (10), the same is true provided the analog of
Hunziker’s theorem with G,(4 ) replaced by
GisA) =4 —T— V,5,) "isvalid,and the V, are T + V5,
bounded. A treatment regarding spurious multipliers as in-
tertwining operators for pairs of channel space Hamilto-
nians, extending the analysis presented here, is given in Ref.
16.
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The multipole structure of stationary space-times®
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A definition of multipole moments for stationary asymptotically flat solutions of Einstein’s
equations is proposed. It is shown that these moments characterize a given space-time uniquely.
Conversely, they can be arbitrarily prescribed, i.e., they generate power series for the field
variables which satisfy the field equations to all orders. Despite their apparently rather different
origin, they are shown to be identical with the Geroch-Hansen ones.

PACS numbers: 04.20. — q
1. INTRODUCTION

This paper studies the spatial asymptotics of stationary
vacuum space-times in sufficient detail to draw conclusions
relevant to their physical interpretation in terms of multi-
pole moments.

Multipole moments at spatial infinity were introduced
into general relativity by Geroch' and Hansen,? using ideas
of conformal compactification of 3-space. These works left
unproved two conjectures, namely:

Geroch’s first conjecture: A given (stationary) space-
time is uniquely characterized by its moments.

Geroch ’s second conjecture: Given a set of moments,
there always exists, modulo convergence questions, a space-
time corresponding to them.

In the present work we describe an independent ap-
proach to multipole moments which works in the physical,
rather than a conformally compactified (“unphysical”)
space, and in the framework of which we are able to settle the
above two conjectures affirmatively. Unfortunately, the
nongeometric nature of our approach prevents us from suc-
cessfully tackling convergence questions of the multipole se-
ries. In the compactified picture and for the first conjecture
{i.e., given a solution which satisfies the boundary condi-
tions) this has recently been accomplished by Beig and Si-
mon in the static® and stationary*® cases. The method in Ref.
3 was taken up by Kundu,® who also treated the stationary
case. Qur present approach, although in this respect outdat-
ed by these papers, has interest in its own right for the follow-
ing reasons:

1. It will often be convenient to be able to read off the
moments purely from the physical metric.

2. In our setting we can prove the analog of Conjecture
2, which is still open in the conformally compactified ver-
sion.

3. Our assumptions on asymptotic behavior are sub-
stantially weaker than the ones required in a treatment of the
conformally transformed (unphysical) field equations.
Whereas we use assumptions of the type @ = O (1/7),

k = 1,2,..., for large radii on the various quantities, one in
most cases needs differentiability conditions at the point at
infinity in the other approach. For example, the conformal
metric has to be at least C * in order for the theorems in Refs.
3-6 to apply. This worry about differentiability at infinity is
only at first sight a pedantry. To illustrate this, consider a

* This work was supported by Fonds zur Férderung der wissenschaftlichen
Forschung in Osterreich, Project No. 4069.
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smooth function @ (x’) in Euclidean 3-space of the form

where (7, £2 ) are spherical coordinates centered at some ori-
gin and the ¢ s are smooth on S %. A quantity & (x') is said to
be O =( f(r))ifthereisa C = function f(r) such that |® | < f(r),
|0,® |<|3 f/Ir|,|0,0,® |< | f/3r*|,~. Consider theKelvin
transform ¥ of the function @ defined by

¥ (x) = (1/AP(X/P), P=7%%,.

For & tobe C °at the origin it is necessary and sufficient that
#,is constant on the 2-sphere. ¥ will alsobe C 'iff ¢, is of the
form ¢,(£2) = a,n’, n'eS %. More generally, for ¥ tobe C*at
the origin there will be restrictions on ¢, (0<r<k ) which, in
particular, imply that ¢, contains spherical harmonics only
up to order /<r. Therefore, differentiability conditions at
spatial infinity, rather than being merely technical assump-
tions on which the study of the asymptotics of the field equa-
tions can be based, are an integral part of such an enterprise,
which, as this paper shows, is itself strongly related to the
structure of Einstein’s equations.

Something must be said about previous work on (1/r)
expansion of metrics. O’Murchadha’ has developed a meth-
od for expanding static metrics which is closely related to
our approach.

Thorne’s review article® contains a list of references on
multipole expansions. It also shows how complicated expan-
sions of a (nonstationary) 4-metric really are. Our work gives
a rigorous treatment of the stationary case and shows the
crucial advantages of using Hansen’s potentials instead of
the metric variables. Nevertheless, there is the same underly-
ing idea in Thorne’s concept of “asymptotically Cartesian
and mass centered to order N’ (ACMC-N)-coordinates and
in the transformations which we perform in Sec. 3.

Tanabe® gave expansions of Hansen’s potentials for
some special metrics in harmonic coordinates.

Finally, there is our own work on the static'’ and sta-
tionary'' field equations up to order 1/r%, of which the pre-
sent paper is a systematic extension and improvement.

In Sec. 2 we introduce the basic field variables and state
our assumptions on their asymptotic behavior.

In Sec. 3 we determine the structure of the general r ~
term of these field variables for a given solution. In order to
eliminate spurious degrees of freedom we employ a coordi-
nate condition which is similar to the deDonder gauge. (In
the context of equations of motion in general relativity the

k
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same condition has been used before by Synge.'?) There
arises a set of trace-free symmetric tensors (i.e., tensor fields
constant in this gauge) which we call multipole moments and
the first & of which determine everything else in the solution
up to terms of order 7 ~ . (Theorem 1.) In proving Theorem 1
we develop an algorithm which, in principle, explicitly ex-
presses the metric in terms of the given moments. It seems, at
first, that we have at the same time established the analog of
Conjecture 2 in our setting. However, this is not a priori
obvious since the equations which the metric obeys are not
really the original field equations, but Einstein’s equations
truncated with our gauge condition. To fulfill our task we
have to show that the metric we have obtained satisfies this
gauge condition identically (i.e., for arbitrary moments).
This is done in Theorem 2. Whereas the algorithm of
Theorem 1 could be used for generating (1/r)-expansions for
a large class of fields, there are some special features of Ein-
stein’s equations and Bianchi’s identities that lead to
Theorem 2.

In Sec. 5 we make contact with the Geroch-Hansen
formulation of the multipole problem. We are able to show
that, for arbitrary &, there exists a conformal compactifica-
tion which renders the unphysical variables C *. (After have
reached C* we could, as Refs. 3 and 4 show, go over to an
unphysical harmonic chart, thereby making everything even
analytic in one stroke). With a C *-conformal metric we can
write down the first X Geroch—Hansen multipole moments.
We prove in Theorem 3 that they are identical with ours.

In Sec. 6 we discuss questions left open by the preceding
paragraphs. These are: the problem of convergence of the
multipole expansion, the uniqueness of coordinates satisfy-
ing the gauge condition, the possible use of other potentials
for multipole expansions, and the independence of the mo-
ments under such a change of potentials.

2. THE STATIONARY FIELD EQUATIONS

We consider a stationary space-time which is represent-
ed by a manifold X and coordinated by {z, x'}. X is topologi-
cally I X N where 7 is the ¢ axis and N is diffeomorphic to R?
minus a ball. On X we are given a metric

ds* = A(dt 4 o, dx')* — A "'y, dx'dx, (2.1)
which satisfies Einstein’s vacuum field equations. 4, ¢;, and
¥, (the metric on V) are functions of x'. Tensor indices will be
moved with 7, and its inverse ¥”. This does not apply to
indices on coordinates and on constants, i.e., we will write x’

=x, and C;.. = C”". The covariant derivative with respect
to y,; will be denoted by D, the covariant Laplace operator by
A (y) = D,D". We use the following symbols for the connec-
tion, the Riemann tensor, and their contractions {a, is an
arbitrary vector field on N ):

Da, =00, — Fjikaj! r:= yjkrijk! (2.2)

DD o, =\R ey, R,=R",, F=R.023)
Consider the vector field

wi s —/{ ZGUijUk, (24)

where €, = €,  is the permutation symbol
(€125 = |det ¥;;|"/?). For static metrics, o, vanishes identical-
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ly. The vacuum field equations imply (see e.g., Ref. 13)

Do, =0. (2.5)
Since NV is simply connected, there exists a scalar field w
(twist of the timelike Killing vector) such that D, = w,. We
shall write down the field equations in terms of a set of varia-
bles introduced by Hansen”

D, = A+’ ~1), Ps=U""o

Dy =44 AT+ 7+ 1), (2.6)
7; =2[D, Py D; Py + D; P D; @5 — D, Py D; P ],

=7, (2.7)
One obtains

Ay)® = 27D (2.8)
for each of the @’s and

Ryly) =7, 2.9)

For static vacuum solutions in the presence of an electric
field there is a similar set of variables and equations (see
Hoenselaers'). In what follows we consider the structure of
stationary fields. The treatment of the electrostatic case is
similar.

Our asymptotic conditions are as follows:

Definition: A solution of (2.8) and (2.9) is called a SV
solution (stationary, asymptotically flat vacuum solution) iff
there exists a coordinate system on & such that

Dy =0(r"), Ps=0=(r"")
Y, =8, +0=(r""). (2.11)

As in our previous papers, we could equally well
require only finite degrees of differentiability and Holder
continuity for the metric variables. Since we do not want to
obscure our results by having to count degrees of differentia-
bility throughout the paper we start with O = fields.

In the following paragraphs we shall frequently employ
a change of the coordinate system x'. The corresponding
maps will not necessarily be diffeomorphisms or even de-
fined in all of V. It will be clear, however, that at least a
neighborhood of infinity is mapped diffeomorphically into
itself and this, for the purpose of asymptotics, is all that is
needed (compare also Ref. 10).

(2.10)

10,11

3. THE MULTIPOLE EXPANSION

Theorem 1: For all SV solutions on N there is a coordi-

such that for all nonnegative integers m

m—1F xa'...xa'
_ a,--a, O=(r— " +".
=@ o= Y, (3.1)

a
m—1 Fa.u-a,x Lo x %

_ o fp—{m+ 1) |
Ps = 120 Nt +0°lr ):
=@+ 0 (r "t (3.2)
1 m—l Ga a xal'..xalfl
¢ :__+ a4 +Ooor—(m+l]’
2 = 1A ( )
(3.3)
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o XX, g, XX
V=0t 1;2 ( r
ayBal'"al— 2 xal..'x017 : x(i Cj)a,-ua,, 3 xal..._x“l B
r21— 2 ’,21— 2
Dy XX o
+— S )+0 (r )
=8, +hP+0=(r= "+ (3.4)

The constants C--- appear only for m >3, the constants D-..

for m>4. All constants are symmetric in all their a; indices,
and D--is also symmetriciniandj. 4, .. _,,B
C D G _,» and the trace parts of

oyl 3 Ty g ) T aya,

R T

E, . ,band of F, .,  depend on the set
Pi={M, . =F[E, . ]

and
Soa, i =C[Foa, ], 1<i<m], (3.5)

where ¢ denotes the trace-free part with respect to §,; (for an
explicit form see Ref. 15) by algebraic relations (linear com-
binations of products M, ., and S, .., ). These algebraic re-
lations are the same for all SV solutions.

Proof: The proof will be carried out by induction with
respect to m. For m = 0O, the theorem is true by the SV as-
sumption. The cases m = 1 and m = 2 are treated in Refs. 10
and 11. We introduce the following functions:

7u=5q+hq: »}/’J=5u_k‘l’ (36)
(k V= hik?’kj)’ B = Sichis .
A=y — 18,h) - (3.7)

Using the Laplace operators of flat space on the left-hand
sides, the field equations (2.8) and (2.9) take on the following
form:

AP =k, + ', + 279, (3.8)

Ahij - 2A(::j) + k e (hij,kl + th.zj - hlj,ik - hik,lj)

+ 2y (Lo Die — Lol iy) — 275 (3.9)

In order to perform the induction process, we must insert the
series (3.1}3.4) into the right-hand sides of (3.8) and (3.9)
and invert the Laplacians with the help of Lemmas A and B
of the appendix. The essential condition for our success is
that the right-hand sides are known up to and including or-
der 7~ ™ *Yif the ® and A, series up to order r ~ " are insert-

ed, since 4 increases the order by two. The term 24, ; in
(3.6) apparently does not meet this requirement:

A , = (known terms of order 3 up to m + 2)
+ O im*3), (3.10)

However, thebad O =(r ~ " * ) remainder does not appear if
the coordinate system is adapted suitably before each step of
induction. We will show that the required coordinate trans-
formations exist, that they do not destroy the forms of @ and
h; up to the known order m, and that the Laplace operators
in (3.8) and (3.9) can then be inverted. In doing so, we obtain
expressions of @ and /; which hold up to order r =" * 1,
Since we are interested in the general solution, we must ad-
mit a contribution from